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 Abstract: This paper demonstrates the ability of the harmonic potential field
(HPF) planning approach to generate a provably-correct, constrained, well-
behaved trajectory for a rigid, nonholonomic robot (a tractor-trailer robot is
not rigid) in a stationary, cluttered environment. This is accomplished using
a closed loop control scheme that is inspired by model predictive control
(MPC). The scheme is realized using a synchronizing signal derived from the
HPF along with a procedure  for inverting the process the robot is using  for
actuating  motion. Performance proofs as well as simulation results of the
suggested planner are supplied.

  
I. Introduction and Background

A planner is an interface between an operator and a servo
process whose function is to interpret the commands and
constraints on the process within the confines of the
environment which the process is situated in. Despite the
diversity of planning methods [1,2] they may all be divided
into two classes: a class that separates a planner into two
modules one called the high level controller (HLC) and the
other is called the low level controller (LLC). The first is
responsible for converting the command, constraints and
environment feed into a desired behavior which the process
must find a way to actualize if the task is to be accomplished
(a know-what-to-do guidance signal). On the other hand, the
second module determines what actions the process actuators
of motion should release in order to actualize the desired
behavior (a know-how-to-do control signal). Although this
division of role in building planners is widely accepted by
researchers in the area, it is believed to be a source of several
problems. It is well-known in practice that processes using the
HLC-LLC paradigm are relatively slow.  Incompatibilities
between the guidance and control signals could lead to
unwanted artifacts in the behavior and undesirable control
effort that consumes too much energy or put too much strain
on the actuators. Jointly designing the guidance and control
modules should yield a simpler and more efficient planner
compared to a design that treats the two modules separately. 
  

Simultaneous consideration of the guidance and control signals
in the design of a planner is a challenging  task. While limited
success was achieved in designing controllers that can
incorporate simple avoidance regions with convex geometry
in state-space [3,4], imposing nonconvex avoidance regions in
the state-space of a dynamical system is difficult [5,6]. The
task is further complicated when state-space constraints have
to be implemented along with constraints in the control space
as is the case with dynamical, nonholonomic systems.  Instead
of using the  two-tier approach to planner design or the  joint
state-space control space approach, an approach in the middle
is adopted. Here the capabilities of a carefully selected planner
that can only generate a guidance signal (i.e. deals only with
the kinematic aspects of motion) are augmented to generate
also the needed control signal. The guidance field from the
kinematic planner is left unchanged. However, instead of the
control component of the planner being designed to enforce

strict compliance of motion with the guidance field, we only
require that the control component strongly discourages motion
from deviating from the course set by the guidance field (effective
compliance with guidance).

 The extremely rich variety of kinematic motion planners may be
categorized in one of two classes: path tracking planners and goal
seeking planners.  A path tracking planner provides a sequence of
guidance instructions that mark one and only one path from an
initial state to a target state. If an unexpected event occur throwing
the state  away from the guidance path, it must find its way back
to the path in order to proceed to the target. On the other hand, a
goal seeking planner supplies a guidance instruction at  every
possible state the system may exist in. Therefore, a disruption
caused by an influence external to the system will not cause a halt
in the effort to drive the state closer to the target. 
    

The HPF approach is an excellent goal-seeking planner. It works
by inducing, using a potential field,  a dense collective of
guidance vectors on the admissible space of the robot (S). A
group structure is then evolved on this collective to generate a
macro template encoding the guidance information the  process
needs to execute. The action selection mechanism the approach
utilizes for generating the structure is in conformity with the
artificial life (AL) method [7]. The HPF approach offers a solution
to the local minima problem faced by the potential field approach
Khatib suggested in [8]. It was simultaneously and independently
proposed by several researchers [9-12] of whom the work of Sato
in 1987 may be regarded as the first on the subject [13]. An HPF
is generated using a Laplace boundary value problem (BVP)
configured using a properly chosen set of boundary conditions.
There are several settings one may use for a Laplce BVP (LBVP)
in order to generate a navigation potential [14-16]. Each one of
these settings possesses its own, distinct, topological properties
[12].  An example is shown below of an LBVP that is configured
using the homogeneous Neumann boundary conditions and
encodes region avoidance constraints and target location: 
                                L2V(X)/0 X0S                 (1)

subject to:  V(XS) = 1,  V(XT) = 0 , and   at  X = ', 
∂
∂

V
n

= 0

where S is the workspace,  ' is its boundary, n is a unit vector
normal to ', Xs is the start point, and XT is the target point. The
trajectory (X(t)) is generated using the dynamical system: 
                                                  (2)X V(X) X(0) X0= −∇ = ∈ Ω

The trajectory is guaranteed to:
                 1-            2-         limX(t) X

t T→∞
→ X(t) ∈ ∀Ω t

Below is also a BVP similar to (1) that adds motion arrival
orientation to the target to the set of encoded features: 

     L2V(X)/0 X0S                                (3)

subject to: V(XS) = 1,V(XT) = 0,V(XT+,Ah)=1 ,  at  X = ',
∂
∂

V
n

= 0

where 1>>,>0 and h is a unit vector in the target direction.  
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Harmonic functions have many useful properties[17] for
motion planning. Most notably, a harmonic potential is also a
Morse function [21] and a general form of the navigation
function suggested in [18]. The HPF approach may be
configured to operate in a model-based and/or sensor-based
mode. It can also be made to accommodate a variety of
constraints [16]. It ought to be mentioned that the HPF
approach is only a special case of a much larger class of
planners called: evolutionary, pde-ode motion planners [14].
 Figures-1 shows the guidance fields and paths generated by a
special type of  HPF planners [16] called nonlinear,
anisotropic HPF planner (NAHPF). In addition to enforcing
regional avoidance constraints, NAHPF planners can also
enforce directional constraints in S. 

              

Figure-1: Output from a directional sensitive, kinematic, HPF  planner. 

Until now HPF planners can only deal with holonomic robots.
In general, extending a holonomic planner to work under
nonholonomic constraints is not always possible. However,
due to the properties HPF planners enjoy, the situation is
different. A planner for a nonholonomic robot whose points
satisfy the rigidity constraints may be constructed by utilizing
the gradient guidance field from an HPF as a motivator of
motion. This requires that the nonholonomic robot be
described using a two-stage model (figure-2). The first stage
models the manner in which the robot converts the control
variables used to actuate motion in its local coordinates. The
second stage is concerned with transforming the motion from
the local coordinates into one that is  global coordinates-
centered (namely, position and orientation). 

 

Figure-2: Two-stage model of a rigid, nonholonomic robot. 
  

The nonholonomic planner is constructed as follows: at each
point in S (Xi) a reference motion dXri(Xi)/dt  is selected as
the negative gradient of the HPF. It is required that the robot’s
motion in its local coordinates be equal to the reference
motion. To achieve this, an inverse of the motion actuation
stage of  the robot  is applied to the field  of reference
motions. The field of reference motions marks the solution
trajectories which the robot can proceed along to the target.
The inverse process, in effect, attaches to each solution
trajectory a dense sequence of control vectors. Due to
limitations on the inversion process and (or) the initial state the

robot is in, the robot will not remain on the solution trajectory it
is currently situated at and will transit to a new one. In a manner
similar to MPC [22], the robot will only use the first control
instruction in the sequence associated with a solution trajectory
and discard the remaining ones. This is repeated till the robot
finally reaches its target (figure-3). This paper demonstrates that
the above paradigm does  provide good basis for building a
provably-correct nonholonomic motion planner for rigid robots.
It ought to be mentioned that the nature of the paradigm does not
limit the construction of planners for planar robots and makes it
possible to deal with three dimensional even  N-D spaces 

           

Figure-3: The MPC paradigm for the nonholonomic planner.
   

In section II the suggested HPF-based, nonholonomic controller
for a massless robot is presented. Section III provides performance
analysis for the massless controller. Section IV suggests an
extension to the second order dynamics case. Simulation results
are in section V and conclusions are in section VI.
  

II. The Kinematic Planner 
Adapting the above approach to planning hinges on the ability to
find a realization that can make the nonholonomic path of the
robot as close as possible to the holonomic path generated by the
gradient of an HPF. Achieving this, ensures that all the provably-
correct properties of a path generated by a  holonomic HPF
planner are  migrated to the corresponding nonholonomic path. A
realization that can accomplish the above has two stages (figure-
4): a stage that generates an HPF-based, synchronizing signal that
attempts to align the velocity vector of the robot with the
reference velocity vector selected as the negative gradient of the
HPF. This synchronizing signal has the form: 

                               (4)
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where " is a non-negative integer, 2 is the orientation of the robot
in its world coordinates, )2 is the difference between the
orientation of the robot and the desired one and <r is the reference
radial speed the robot is required to assume. The second stage
operates on the synchronizing signal in (4) with an operator that
attempts to invert the motion actuation process of the robot in
order to yield the control signal u=[u1 u2]T: 
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where F is an inverse operator (linear or nonlinear) derived from
the motion actuation stage of the robot’s model. 

        Figure-4: the nonholonomic planner - The massless case. 
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Below are the two-stage models and the inverse operator for
two popular mobile robots, the differential drive robot and the
front wheel steered car (the slow steering case): 
  1- The differential drive robot (DDR) (figure-5A): 

Figure-5: A-DDR  mobile robot, B-FSR mobile robot. 
   The equations describing motion for such a robot are: 
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where  r is the radius of the robot’s wheels, W is the width of
the robot, TR and TL are the angular speeds of the right and left
wheels of the robot respectively. The inverse operator is:
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2-The Front wheel Steered Robot (FSR) (figure-5B): The
equations describing motion for this robot are: 
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where L is the normal distance between the center of the front
wheel and the line connecting the rear wheels, Th is angular
speed of the rear wheels, and N is the steering angle of the
front wheel (B/2>N>-B/2). The inverse operator is: 
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In the above cases, it is possible to perfectly invert the
actuation stage. If this is not possible, the pseudo inverse
approach may be used to construct the inversion operator F.
The equation of motion for many  nonholonomic mobile robots
may be written as: 
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where  G is a nonlinear vector function. At a certain (x,y) point
in space, equation-11 may be linearized at the current
operating condition and the motion of the robot described  as:
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where A need not necessarily be full rank. In this case the
inverse operator may be constructed as: 
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A+ is the pseudo inverse of A [23] and A is derived from G. 
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Figure-6: The close loop, HPF-based, nonholonomic system.
  

III. Performance Analysis
In this section two properties of the above controller are proven.
It is shown that the closed loop system in figure-6 is stable for a
general rigid nonholonomic robot. For the specific cases of the
differential drive  and front wheel steered robots, where perfect
actuator inversion is possible,  convergence to the target position
and orientation is guaranteed. It is also proven that the trajectory
of the robot can be made arbitrarily close to the trajectory laid by
the gradient dynamical system directly derived from the HPF.
This proves that the robot trajectory also satisfies all the provably-
correct properties of a holonomic HPF path. 
     
The proofs of closed loop stability assume that the pseudo inverse
is used in constructing the inverse operator of the actuators. Proofs
for this case subsumes the proofs for the cases where actuators
inversion is perfect. 
   
Proposition-1:A matrix P constructed as the product of a   matrix
A by its pseudo inverse (P=A+A) is positive semi-definite (A is
not full-rank). 
   Proof: by definition the pseudo inverse of A is: 
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Let  Q=ATA, and Z=*AI. Since Q is symmetric and Z is positive
definite, they may be jointly diagonalizable [24] into: 

  Q=UT7U and Z=UTU,                (16)
where U is an orthonormal matrix and 7 is a diagonal matrix
containing the eigenvalues of Q (8i). Substituting (16) into (15) in
order to compute P we have: 
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Since Q is constructed as the product of a matrix by its transpose,
its eigenvalues are non-negative. Therefore, the eigenvalues of P
lie in the interval [0,1), i.e. they are non-negative. Therefore P is
positive semi-definite. 
Proposition-2: The closed loop system constructed by using the
control  law in (14) with the system in (12,13) is stable. If A is full
rank, then the robot will converge  to the target position and
orientation. 
Proof: Consider the Liapunov function candidate: 

                                     (18)Ξ ∆= +V(x,y)
1
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note that the HPF V is a Liapunov function that is positive
everywhere in S except at x=xT and y=yT where it is equal to
zero[16]. The derivative of  = with respect to time is: 
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Manipulating (12), (13) and (14) we obtain: 
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where P=AA+. Substituting (20) in (19) we get: 
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The gradient of V may be expressed as: 
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substituting (22) into (21) we have: 
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There are two cases one for " even and the other for " odd. If
" is odd, cos"-1()2) is non-negative for any value of )2. Since
P is positive semidefinite, it can be shown by direct
computation of the eigenvalues of S that the  eigen values of
S are non-negative provided that P is positive semidefinite. In
other words, S is also positive semidefinite. For the case where
perfect inversion of the motion actuation process is possible
(i.e. P=I), (24) is zero at *LV*=0, )2=0 and )2=B/2.
Equation (4) may be used to compute the minimum invariant
set of the system: *LV*=0, )2=0 to which the robot will
converge. Since it is proven that an HPF is Morse [21]
convergence of *LV* to zero implies convergence of x and y
to xT and yT. Also convergence of )2 to zero implies that the
robot will converge to the orientation encoded by the HPF at
xT and yT. For the case where actuator inversion is not perfect
(i.e. P…I), convergence analysis will depend on the structure
of P. However, from the above it can be easily sown that this
will only cause deadlock.  For the case where " is even, the
sign of cos "-1()2) is negative for* )2*>B/2. However from
(4) it can be shown that :          (25)lim arg( V).

t
t

→∞
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In other words, )26 0 and S is negative semidefinite. 
   Proposition-3: Let D be the spatial projection of the trajectory
X(t) laid by the gradient dynamical system in (2). Also let Dn
be the spatial projection of the trajectory laid by the suggested
nonholonomic planner (figure-7). Let *(t) be the deviation
between D and Dn at time t. Let *m be the maximum deviation.
If the motion actuation process is fully invertible, then by
setting " high enough, *m may be made arbitrarily small, 
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where  Cm is a finite positive constant [25]. A upper bound on
d*/dt (*dm)  may be constructed as: 
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As can be seen, the rate of change in * tends to zero as " goes to
infinity. Since the system is stable, we have: 
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Since (27 ) satisfies the Lipschitz conditon and its convergence to
zero is independent of " and depends mainly on (4), an upper
bound on *m may be constructed as follow: 
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where T is the effective time d*/dt converges to zero. Using the
above the maximum deviation may be bounded as: 
            *m # *dm@T/2           (33)
which also tends to zero as " becomes very large.  

Proving that the deviation between the trajectory generated
directly from the gradient of the HPF and the nonholonomic path
may be driven to zero. This in turn implies that the nonholonomic
path inherits all the provably-correct properties of the gradient,
this includes obstacle avoidance. 

    Figure-7: deviation between the HPF trajectory and the
      nonholonomic trajectory.

IV. A Suggested Extension: The Kinodynamic Case
The dynamic behavior of the differential drive robot that ties the
torques applied to the right and left wheels (TR, TL) to the position
and orientation of the robot may be described using two, coupled
differential equations. The first one is obtained by differentiating
(6) with respect to time,   
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and the second is derived using Lagrange dynamics in the natural
coordinates of the robot, 
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Where M is the mass of the robot. It can be demonstrated by
simulation that  using the control scheme for a massless robot with
robots that have mass will cause instability. To stabilize the
system an omni-directional, linear viscous dampening force
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applied in the natural coordinates of the robot is used to
generate the control signal:          

      ,      (36)T
T

K
V cos (arg( V) )

arg( V)
KR

L
P d
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⎣
⎢

⎤

⎦
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⎡
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⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−B 1
α θ

θ
ρ
θ

where KP and KD are positive constants, B-1 is the  inverse of
B,  and  is the radial speed of the robot, ρ

.     (37)ρ = +x y2 2

The block diagram of the planner is shown in figure-8. 
          

( , )ρ θ

      Figure-8: A dynamic, HPF-based planner, nonholonomic case. 
  Rate feedback in the natural coordinates of the robot is needed
to stabilize the response and make the system yield to the
guidance signal derived from the HPF. Significant transients
are expected for a small coefficient of rate feedback. Although
increasing this coefficient reduces the transients, it results in
reducing the speed of the robot. One way to cope with this
problem is to sensitize the damping to the guidance signal is to
notice that changing the speed of the robot is not needed if the
actual speed of the system is equal to the reference speed. This
is realizd using the  control signal:                          

    (38)
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It was proven in [16] that the gradient dynamical system in (2)
which is constructed from an underlying harmonic potential
guarantees convergence from any point in S to a specified
target point. The proof makes use of the fact that a harmonic
potential is also a Liapunov function candidate. The following
proposition shows that the procedure suggested in (38) makes
it possible for the dynamical system in (2) to steer a
differential drive robot with second order dynamics from any
initial position and orientation in S to the target position and
orientation encoded in the harmonic field V. The LaSalle
invariance principle [26], is used in the proof. 
    Propositon-4: The control law in (38) applied to a differential
drive robot with second order dynamics described by the
system equation in (34,35) guarantees global asymptotic
convergence of the robot from any initial position and
orientation in S to the target potion point (xT,yT) and
orientation (arg(-LV (xT,yT)) encoded in the harmonic potential
V provided that Kp>0 and Kd>0. 
   Proof: consider the following Liapunov function candidate: 

 (39)Ξ = ⋅ ⋅ + ⋅ ⋅ −∇ − + ⋅ + ⋅K M V(x, y) 1
2

K I (arg( V(x, y) ) 1
2

I 1
2

MP d
2θ θ ρ2 2

where M is the mass of the robot, I is its inertia , Kp and Kd are
positive constants. Notice that V(x,y) is a valid liapunov
function [16]. It is always positive except at the target point
(xT,yT) where it is equal to zero. As a result = is always
positive except at the target position and orientation when the
robot is at a standstill. The time derivative of = is: 
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Substituting (35), (38), (41) and (42) in (40) and noticing that for
a differential drive robot B+=B-1, we have: 

                 (43)

cos( ) )
( ) )
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Therefore:            .                     (44)Ξ = − ⋅ ⋅ − ⋅K I K Md Pθ ρ2 2

As can be seen the time derivative of the Liapunov function is
negative semi-definite. According to LaSalle principle motion will
converge to a subset of the set of points (E) for which the time
derivative of = is zero: 

         .         (45)E 0, 0, x, y,= = ={ }ρ θ θ
The subset is called the minimum invariant set (W) and may be
computed as the set of point for which the gradient dynamical
system in (2). It was shown in [16] that motion for (2) is
guaranteed to converge to the target point xT, yT , hence the
orientation of the robot will converge to arg(-LV(xT, yT )). The
dynamical differential drive robot will converge to set: 
      (46)W 0, 0, x = x , y = y , V x , yT T T T= = = = −∇{ arg( ( )}ρ θ θ
provided that Kp and Kd are positive. 

  
V. Simulation Results

The suggested controller is tested for the massless case using  the
gradient guidance field in figure-9. This field encodes the simple
behavior of move right and stay at the center.The trajectories
obtained for different values of " are shown in figure-10. The
simulation is carried out for both the differential drive robot and
the front wheel-steered robot. The time step )T=.01 second and
the total duration of the stimulation is 6 seconds. The trajectories
obtained for both robots are identical. The control signal for both
robots (2(0)=B/2 and "=9) are shown in figure- 11A for the DDR
and figure-11B for the FSR. 

     

Figure-9: Move right and stay at center gradient guidance field. 

The controller designed for the massless case fails when used with
a differential drive robot with a mass.  Direct use of the guidance
force as a control signal will cause instability. To stabilize the
system an omni-directional, linear viscous dampening force
applied in the natural coordinates of the robot is used to generate
the control signal. The response of the system is shown in figure-
12 for  KP=.001,  Kd=30 and an "=0. As can be seen, the use of
rate feedback in the natural coordinates of the robot did stabilize
the response and made the system yield to the guidance signal
derived from the HPF. Significant transients are observed for a
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small coefficient of rate feedback. Although increasing this
coefficient reduces the transients, it results  in reducing the
speed of the robot. 

Figure-10: Trajectories  from the nonholonomic, kinematic, HPF planner. 
   

       Figure-11: control signals, A-DDR, B-FSR  "=9. 
      

In figure-13, the direction sensitive damping is compared to
the linear damping case using same coefficients for the
planner. As can be seen sensitizing the dampening to direction
significantly reduced the overshoot and settling time without
compromising the speed of the robot. 

     

    Figure-12: Response of the planner in (13) for different Kp and Kd. 
     

Figure-13: response of the planner in (15) compared to the one in (13). 

   Figure-14: response of the planner in (15) compared to the one in (16). 
   
In figure-14 the direction sensitive controller in (38) simulated for
two values of "=0,1.  As can be seen the case where "=1 has
lower overshoot compared to the case where "=0. Using a
Kp=.001 and a Kd=60,  The controller in (38) is tested in a
cluttered environment. Figure-15 shows the harmonic  gradient
guidance field that is used to motivate the motion of the robot and
the holonomic, kinematic trajectory such a field generates. Figure-
16 shows the dynamic trajectory the controller generates for robot
as a function of time. As can be seen, the nonholonomic, dynamic
trajectory is very close in shape to the holonomic, kinematic
trajectory with a satisfactorily smooth orientation profile. The
control torques on the right and left wheels of the robot are shown
in figure-17. In figure-18 the robustness of the proposed controller
in the presence of actuator saturation is tested. The magnitude of
the torques (TR and TL) is restricted not to exceed Tm: 

       (47)T C max(max(Tn (t)), max(Tn (t)))m t R t L= ⋅

where TnR and TnL are the torques for then non-saturated case, C
is a constant representing the percentage saturation. The maximum
torque for the non-saturated actuators is equal to .103 N/M. The
controller showed remarkable robustness to saturation. The
trajectory was virtually unaffected up to 99.8% saturation (i.e.
C=.002); a sudden breakdown in performance is observed beyond
this limit.

VI. Conclusions
In this paper the ability of the HPF approach to accommodate
nonholonomic constraints when planning a trajectory for a robot
is demonstrated. This adds a significant improvement to the
already existing set of constraints the approach can subject a
planning process to in provably-correct manner. It also shows that
the wealth of properties harmonic potential fields have (e.g. the
goal seeking ability utilized in this paper) is a  great asset of the
HPF approach and the key to extending the capabilities of the
approach. .     
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Figure-15: Guidance field and trajectory of a kinematic, holonomic, HPF            
        planner. 

     

Figure-16: Trajectory and curvature using the planner in (16) and the guidance 
field in fig. 15.

      

Figure-17: Torque control signals corresponding to fig. 20

Figure-18: trajectory in the presence of actuator saturation. 
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