
  

  

Abstract— This paper suggests a novel procedure to jointly 
identify the order of a GPR discrete relaxation spectrum and 
estimate its parameters (relaxation frequencies and their 
strengths). These quantities are important for interpreting the 
contents of the subsurface layers. The suggested method turns 
the estimator into a nonlinear control system that can convert 
an initial guess of the number and parameters of the relaxation 
modes into the correct one. Blindly identifying the number of 
relaxation modes and estimating their values and strengths is 
guaranteed if the number of assumed modes is higher than the 
number of actual modes. The procedure is hardware-friendly 
and exhibit high resistance to noise. 

I. INTRODUCTION 

Ground penetrating radars are electromagnetic-based 
techniques used to provide visual indicators of the contents 
of shallow subsurface areas. They have many applications in 
construction, nondestructive testing and landmine detection 
to mention a few [1,2]. GPRs operate by radiating a 
spectrum-rich signal into the ground that is to be explored. 
The radiated signal travels through the earth’s sub-layers. 
The objects that the traveling wave encounters either reflect 
or absorb part of the wave energy.  Some of the absorbed 
component causes the electromagnetic energy to resonate 
within these objects. The resonant energy that is trapped 
inside the objects quickly dissipates as part of it is re-
radiated to the outside world. The reflected signal picked-up 
by a GPR’s receiver at a location, known as the wiggle 
trace, is the building block of all GPR subsurface images. A 
wiggle trace may be used at a location to detect the presence 
of objects and to determine how deep they lie beneath the 
surface.  
 
Subsurface materials are often described as dielectrics, with 
the parameters permittivity and conductivity loosely termed 
as their ‘dielectric properties’ [3]. As electromagnetic 
energy moves through a medium, charges become displaced 
and polarized, resulting in a loss of energy [4, 5]. The 
frequency at which this polarization occurs is called the 
relaxation frequency.  The resulting electrical losses are a 
major factor in determining how deep the incident wave can 
travel through earth. Moreover, these losses constitute a 
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major part of the mechanism through which subsurface 
information is encoded in the reflected GPR signal. In 
effect, a GPR attempts to record the contrast of the earth’s 
sub-layer dielectric properties. The dispersion and 
absorption of many liquids and dielectrics are represented 
[6] by the empirical formula:  
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where ζ is the generalized relaxation frequency and c is a 
constant representing the strength of this spectrum 
component. Using the above formula, the complex 
relaxation spectrum of a GPR trace may be modeled as:  
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where N is the number of relaxation frequencies, ck’s and 
ζk’s are their strengths and values. All these parameters are 
unknown and have to be estimated in order to form an idea 
about the subsurface content at the location where the 
reflected signal is acquired.  This excessively complex task 
requires that model order identification and spectrum 
estimation [7, 8, 9] be jointly and accurately carried-out. 
What makes the process difficult is that the parametric 
spectrum of a reflected GPR signal does not conform to an 
ARMA model. This prevents the use of well-developed 
parametric spectrum estimation techniques.  
 
A variety of procedures was suggested to identify the 
relaxation spectrum. An approach that uses the first and 
second derivative of the spectrum to compute the number 
and values of the relaxation frequencies is suggested in [10, 
11]. The strengths of the relaxation modes are not estimated. 
Differentiating the spectrum of a real-life signal can make 
the estimates highly susceptible to noise. In another 
approach [12, 13] heuristics are used to determine the 
number and values of the relaxation frequencies. Linear 
regression is then used to compute the magnitudes of these 
frequencies. In [14, 15] a large number of relaxation 
frequencies along with their strengths is assumed. A 
computationally intensive nonlinear regression is applied to 
iteratively reduce the number of frequencies until the 
minimum components are reached that produce a 
satisfactory fit. An approach that capitulate on existing 
parametric spectrum estimation techniques starts by 
selecting a large number of possible relaxation frequency 
samples. The magnitudes of these frequencies are estimated. 
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Based on the magnitude estimates, procedures are developed 
to select the frequency samples that have high probability of 
belonging to the actual relaxation spectrum [16, 17, 18]. A 
considerable amount of work seems to focus on estimating 
the continuous distribution of the relaxation frequencies [19, 
20].  However, [21] showed that the discrete relaxation 
spectrum carries almost all the information in the continuous 
spectrum. They prove that few relaxation modes can be used 
accurately to mimic the continuous spectrum. 
  

This paper suggests a novel, joint order identification and 
discrete relaxation spectrum estimation procedure. The 
method can blindly and accurately compute the number of 
relaxation frequencies, their values and strengths. All what is 
required is that the initial number of frequency relaxation 
modes is equal to or higher than the actual number of 
frequency components that created the spectrum. Initially, the 
values and strengths of the relaxation frequencies can be 
selected arbitrarily. Informed selection can speed-up the 
convergence of the procedure. The method is relatively fast, 
hardware-friendly and has excellent performance in the 
presence of noise.  The procedure is developed and its 
performance is thoroughly investigated by simulation. 

   

II. PROBLEM STATEMENT 

Let N be the true number of relaxation frequencies 
contained in the relaxation spectrum (equation-1). Let  

[ ]T
N21 .... ζζζ=Ψ   be a vector containing the true 

relaxation frequencies and [ ]T
N10 c...ccC =  be their 

corresponding strengths. Let Ns be the number of assumed 
relaxation modes. This number has to be greater than or 
equal to the actual number (Ns≥N). Let sΨ  
( [ ]T

Ns21 .... ssss ζζζ=Ψ ) and Cs ( [ ]T
Ns10 cs...cscsCs = ) be 

state variables used to estimate the relaxation frequencies 
and their strengths. Also, let H(Ω) be the discrete relaxation 
spectrum computed from a reflected wiggle trace and 
sampled at L discrete frequencies ( [ ]L21 .. ωωω=Ω ). 
The joint order identification and discrete relaxation 
spectrum estimation is carried-out by constructing the first 
order, nonlinear dynamical system in (3):  
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The system is constructed so that the final values of the state   
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III. THE SPECTRUM ESTIMATOR 

The suggested method begins by acquiring a reflected GPR 
trace. This trace is used to compute a sampled frequency 
spectrum vector H(Ω) (7). The method places little 
restrictions on the frequency points. One may densely 
sample the frequency spectrum in a uniform manner without 
suffering excessive computational complexity. On the other 
hand, extensive simulation shows that the method functions 
well even if the sample size is relatively small.  
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The goal of the dynamical system in (3) is to drive the 
assumed discrete relaxation spectrum parameters to final 
values that satisfy the system in (8). The structure of the 
spectrum is factored in the evolution process to naturally 
filter-out erroneous estimate trajectories that yield incorrect 
values of the discrete relaxation parameters that may also 
satisfy equation (8). 
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The construction of the system (3) begins by creating the 
expanded vector He(Ω) (9) that have the real and imaginary 
parts of H(Ω) explicitly stated  
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A vector (Ha) is constructed representing the expanded 
transient, estimate spectrum (10) along with the reflection 
matrix T (11). Both are generated from the values of 

Cs(t)t),(sΨ  at time t 
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The order of the relaxation spectrum along with the values 
of the relaxation frequencies and their strengths may be 
obtained from the final value of the nonlinear state space 
system in (12) 
 
 
  

         
     
 
       
    
  
            

 

      Cs))s,,Ha(-)(He(Cs)s,,T(
s
sC

ΨΩΩ⋅ΨΩ=⎥
⎦

⎤
⎢
⎣

⎡

Ψ
    (12) 

  

 
Figure-1: The suggested spectrum estimator 

 
 

IV. SIMULATION RESULTS 

 This section contains simulation results to demonstrate the 
capabilities of the suggested method. The base truth used to 
test the estimator is obtained from equation (2).  
 
1. Effect of false initial assumptions 
This example demonstrates that the suggested method is able 
to eliminate superfluous assumptions of the spectrum 
components and produce both the number and parameters of 
the modes of the discrete relaxation spectrum. The base truth 
reflected signal is assumed to contain three relaxation 
frequencies. Their values and magnitudes are shown in 
table-1  

ζ 0 10 50 900 
C 1/2 1 1 3 
Table-1: base-truth relaxation frequencies   

The complex spectrum is evaluated at the 17 angular 
frequencies ωi={30, 40, 50, 60, 70, 80, 90,100,200, 300, 
400,500, 600, 700, 800, 900, 1000, 2000}.  
 
Here the number of assumed  relaxation frequencies is made 
the same as the base-truth ones. The initial guess (table-2) is:  
 

ζs (0) 0 50.1 90.5 120 
Cs (0) 0.7 3.8 4.2 2.8 

Table-2: Initial guess 
 
The final estimates are shown in table-3 and the evolution of 
the frequencies is shown in figure-2. As can be seen, all the 
assumed quantities converged close to the true ones.  

ζf 0 12.1 45.6 890 
Cf 0.521 .79 1.09 3.03 

  Table-3: Final estimates 
 

 
 
 
 
 
 
 
 
         (11) 

 
Fig-2: The evolution curves of the relaxation frequencies estimates 

  

The number of assumed relaxation modes is increased to 
five. The initial guess is shown in table-4 below:    
  

ζs (0) 0 50.1 90.5 120 200 300 
Cs (0) 0.7 3.8 4.2 2.8 3 5 

Table-4: Initial guess of the relaxation frequencies 
    

The final estimates are shown in table-5 and the evolution of 
the relaxation frequencies is shown in figure-3. As can be 
seen, three assumed components merged into one value 
close to a base truth components. The sum of the strengths 
of these components is close to the base truth strength. The 
remaining components converged to values and strengths 
close to the base truth components.  
  
ζf 0 8.7 8.7 8.7 45.7 890 
Cf 0.494 0.293 0.293 0.293 1.121 2.995 

Table-5: Final estimates of the relaxation frequencies and their magnitudes 
  

 
Fig-3: The evolution curves of the relaxation frequencies estimates 
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2. Robustness in the presence of noise 
Here the effect of noise on the estimation method is 
examined. The base truth relaxation modes in table-1 are 
used in the test. The complex spectrum is sampled at 50 
points that are uniformly distributed on the interval [2π, 
600π]. Seven relaxation frequencies are assumed. The 
values of these frequencies and their magnitudes are shown 
in table-6.  
 
ζs (0) 0 30 40 200 300 500 700 800 
Cs (0) 0.7 3.8 4.2 2.8 3 5 4 4 

Table-6: Initial guess 
 

   

 
Figure-4: Evolution of relaxation frequencies estimates (100 dB) 

 

 

   
Figure-5: Real and imaginary parts of the base-truth (blue) and estimated 

(green) spectrums (100 dB) 
 
 

The process is evaluated for three noise levels: low (SNR 
100 dB), medium (SNR 40 dB) and high (SNR 20 dB). The 
estimated parameters are shown in table-7.   
  

 
Figure-6: Evolution of relaxation frequencies estimates (40 dB) 

  
 

SNR=100 dB SNR=40 dB SNR=20 dB 
ζfi cfi ζfi cfi ζfi cfi 
0 0.5027 0 0.4627 0 0.8023 

11.4855 0.2219 8.2618 0.2645 15.5779 0.9803 
11.4855 0.2219 44.579 0.3944 15.5779 0.9803 
11.4855 0.2219 8.2618 0.2645 15.5779 0.9803 
53.6164 0.5612 44.579 0.3944 86.1780 0.3929 
11.4855 0.2219 44.577 0.3930 46.4476 -0.602 
44.7444 0.4419 8.2633 0.2638 86.1780 0.3929 
899.987 3.0024 904.56 2.9823 867.118 3.0245 

Table-7:  Final estimates 
 

 

 

 
  

 Figure-7: Real and imaginary parts of the base-truth (blue) and estimated 
(green) spectrums (40 dB) 
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The evolution of the relaxation frequencies for SNR= 100 
dB is shown in figure-4. The superfluous components 
merged to values very close to the base-truth components. 
The base-truth and estimated spectrums (both real and 
imaginary parts) are shown in figure-5. As can be seen the 
estimated relaxation spectrum is almost identical to the base 
truth one.  
  
Decreasing SNR 40 dB did not affect much the behavior of 
the procedure. The same observation for the SNR 100 dB 
case still hold. Actually, the addition of some nose seems to 
improve the quality of the estimates. The evolution of the 
relaxation frequency is shown in figure-6. The base-truth 
and estimated spectrums are shown in figure-7. 
 

 

 
Figure-8: Evolution of relaxation frequencies estimates (20 dB) 

 
The performance of the method remains acceptable even 
when SNR drops to as low as 20 dB. The evolution curves 
of the frequencies are in figure-8 and the spectrum estimates 
in figure-9.  
 
3- Relaxation mode hypothesis testing 
A scenario may be encountered where one is interested in 
detecting specific relaxation frequencies that correspond to 
certain buried objects of interest. In this case, the values of 
the relaxation frequencies of interest are fixed. Only their 
magnitudes are estimated to indicate their presence. This 
situation is tested below where a reflected base-truth signal 
with relaxation frequencies shown in table1 is used. The 
complex spectrum is evaluated at the same 17 frequencies 
given in example-1.  
 
A set of seven fixed relaxation frequencies containing the 
correct ones are assumed (table-8). Only the magnitudes are 
allowed to vary. The final estimates are shown in table-9. As 
can be seen the magnitudes of the false frequencies dropped 
close to zero. The magnitudes of the correct ones converged 
close to the base-truth values. The evolution curves of the 
magnitudes are shown in figure-10.  
 

 

 
Figure-9: Real and imaginary parts of the given and estimated spectrums 

(20 dB) 
 

ζ 0 10 50 100 400 500 700 900 
C 0.7 3.8 4.2 2.8 3 5 4 4 
Table-8: Assumed fixed relaxation frequencies and their magnitudes 

 
ζs Cf 
0 0.4998 
10 1.0004 
50 0.9992 
100 .0011 
400 -0.0171 
500 0.0320 
700 -0.0252 
900 3.009 

   Table-9- 13: Final estimates 
 

V. CONCLUSIONS 

A robust technique for blindly and jointly identifying the 
order of a GPR discrete relaxation spectrum and estimating 
its parameters is suggested. Early investigation shows that 
the method is robust, efficient and hardware-friendly.  
 
We are currently focusing our activities to develop the 
method along two directions. The first direction is to 
experimentally verify the performance of the method. The 
other has to do with theoretically investigating the behavior 
of the method in terms of its ability to converge to the true 
estimates along with its behavior in the presence of noise. 
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Figure-10: Evolution curves of the strengths of the relaxation frequencies 

assumed in table-8. 
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