Electric Circuits II
Two-Port Circuits Hybrid and Transmission Parameters

Lecture \#43

The material to be covered in this lecture is as follows:
o The Two-Port Hybrid parameters
o The Two-Port Transmission parameters
o Relationships Among the Two-Port Parameters
o Reciprocal Two-Port Circuits

After finishing this lecture you should be able to:
> Determine the Two-Port Hybrid Parameters
> Determine the Two-Port Transmission Parameters
$>$ Derive all the Other Sets from a Known Set of Parameters
$>$ Recognize Reciprocal and Symmetric Two-Port Circuits

Hybrid parameters

* The z and y parameters of a two-port network do not always exist.
* There is a need for developing another set of parameters.

Hybrid Parameters (h-parameters):

$$
\begin{align*}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \tag{43-1}\\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{align*}
$$

or in matrix form:

$$
\left[\begin{array}{l}
V_{1} \tag{43-2}\\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=[h]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

The h-parameters are very useful for describing electronic devices such as transistors. It is much easier to measure experimentally the h-parameters of such devices than to measure their z or y parameters. In fact an ideal transformer for example does not have z-parameters as it is impossible to express the voltages in terms of the currents or vice versa. See Fig. 43-1

The values of the parameters can be evaluated by setting $\left.\right|_{1}=0$ (input port open-circuited) or $V_{2}=0$ (output port short-circuited). Thus,

$$
\begin{align*}
& h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}, h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} \tag{43-3}\\
& h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}, h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0}
\end{align*}
$$

The parameters $h_{11}, h_{12}, h_{21}, h_{22}$ represent an impedance, a voltage gain, a current gain, and an admittance respectively. This is why the h-parameters are called the hybrid parameters:
$>\mathrm{h}_{11}=$ short-circuit input impedance
$\rightarrow \mathrm{h}_{12}=$ Open-circuit reverse voltage gain
$>\mathrm{h}_{21}=$ short-circuit forward current gain
$>\mathrm{h}_{22}=$ Open-circuit output admittance
The following example illustrates the determination of the h-parameters for a resistive circuit.
Example 43-1
Find the hybrid parameters for the two-port network of Fig. 43-2
Solution:
To find h_{11} and h_{21}, we short circuit the output port and connect a current source I_{1} to the input port as shown in Fig. 43-3a

Fig. 43-2 Circuit for Example 43-1

$V_{1}=I_{1}(2+3 \| 6)=4 I_{1}$ hence $h_{11}=\frac{V_{1}}{I_{1}}=4 \Omega$ and by current division, $-I_{2}=\frac{6}{6+3} I_{1}=\frac{2}{3} I_{1}$ hence $h_{21}=\frac{I_{2}}{I_{1}}=-\frac{2}{3}$

To find h_{12} and h_{22}, we open circuit the input port and connect a voltage source I_{2} to the input port as shown in Fig. 43-3b. By voltage division
$V_{1}=\frac{6}{6+3} V_{2}=\frac{2}{3} V_{2}$ hence $h_{12}=\frac{V_{1}}{V_{2}}=\frac{2}{3}$ and,
$V_{2}=I_{2}(6+3)=9 I_{2}$ hence $h_{22}=\frac{I_{2}}{V_{2}}=\frac{1}{9} \mathrm{~S}$
$\begin{array}{ll}\text { Hybrid Parameters (g-parameters): } & I_{1}=g_{11} V_{1}+g_{12} I_{2} \\ & V_{2}=g_{21} V_{1}+g_{22} I_{2}\end{array}$
or in matrix form:

$$
\left[\begin{array}{l}
I_{1} \tag{43-5}\\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=[g]\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]
$$

The values of the g -parameters can be evaluated by setting $\vee_{1}=0$ (input port short-circuited) or $\mathrm{I}_{2}=0$ (output port open-circuited). Thus,

$$
\begin{align*}
& g_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{I_{2}=0}, g_{12}=\left.\frac{I_{1}}{I_{2}}\right|_{V_{1}=0} \tag{43-6}\\
& g_{21}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}=0}, g_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{V_{1}=0}
\end{align*}
$$

The g-parameters or inverse hybrid parameters are:
> $g_{11}=$ Open-circuit input admittance
$>g_{12}=$ Short-circuit reverse current gain
$>g_{21}=$ Open-circuit forward voltage gain
> $g_{22}=$ Short-circuit output impedance
The following example illustrates the determination of the g-parameters.

Example 43-2

Find the g parameters as a function of s for the circuit of Fig. 43-4
Solution:

To get g_{12} and g_{22}, we short circuit the input port and connect a current source I_{2} to the output port as shown in Fig. 43-4b.
By current division, $I_{1}=-\frac{1}{s+1} I_{2}$ or $g_{12}=\frac{I_{1}}{I_{2}}=-\frac{1}{s+1}$
Also, $V_{2}=I_{2}\left(\frac{1}{s}+s \| 1\right)$ or $g_{22}=\frac{V_{2}}{I_{2}}=\frac{1}{s}+\frac{s}{s+1}=\frac{s^{2}+s+1}{s(s+1)}$
Thus, $[g]=\left[\begin{array}{cc}\frac{1}{s+1} & -\frac{1}{s+1} \\ \frac{1}{s+1} & \frac{s^{2}+s+1}{s(s+1)}\end{array}\right]$

Transmission parameters

As we have seen in Equs. (42-5) and (42-6) that we reproduce here for convenience:
Transmission Parameters (a-parameters):

$$
\begin{align*}
& V_{1}=a_{11} V_{2}-a_{12} I_{2} \tag{43-7}\\
& I_{1}=a_{21} V_{2}-a_{22} I_{2} \\
& V_{2}=b_{11} V_{1}-b_{12} I_{1} \\
& I_{2}=b_{21} V_{1}-b_{22} I_{1} \tag{43-8}
\end{align*}
$$

where we express the input variables in terms of the output variables or the output variables in terms of the input variables.
In matrix form:

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right] }=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]=[T]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \quad(43-9) \tag{43-9}\\
& {\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
-I_{1}
\end{array}\right]=[t]\left[\begin{array}{c}
V_{1} \\
-I_{1}
\end{array}\right] } \tag{43-10}\\
& a_{11}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}, a_{12}=-\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} \quad b_{11}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{1}=0}, b_{12}=-\left.\frac{V_{2}}{I_{1}}\right|_{V_{1}=0} \tag{43-12}
\end{align*}
$$

Where

$$
a_{21}=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}, a_{22}=-\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}
$$

$$
\begin{equation*}
b_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{I_{1}=0}, b_{22}=-\left.\frac{I_{2}}{I_{1}}\right|_{V_{1}=0} \tag{43-11}
\end{equation*}
$$

The a-parameters represent:
$>\mathrm{a}_{11}=$ Open-circuit reverse voltage ratio
$>\mathrm{a}_{12}=$ Negative short-circuit transfer impedance
$>\mathrm{a}_{21}=$ Open circuit transfer admittance
$>\mathrm{a}_{22}=$ Negative short-circuit reverse current ratio

The b-parameters or inverse hybrid parameters are:
$>\mathrm{b}_{11}=$ Open-circuit voltage gain
$>\mathrm{b}_{12}=$ Negative short-circuit transfer impedance
$>\mathrm{b}_{21}=$ Open circuit transfer admittance
$>\mathrm{b}_{22}=$ Negative short-circuit current gain

* These parameters are useful in the analysis of transmission lines (such as cable and fiber) because they express sending-end variables in terms of receiving-end variables.
* They are also called ABCD parameters (for a) and abcd parameters (for b).
* They are used in the design of telephone systems, microwave networks, and radars.

Relationships among the Two-Port Parameters

4 If we know one set of parameters we can derive all the other sets from the known set

* Table 43-1 shows the Parameter Conversion Table

Let's derive the relationship between z and y and between z and a as an example.
To derive the relationship between z and y we first solve Eqs. (42-2) $\begin{aligned} & I_{1}=y_{11} V_{1}+y_{12} V_{2} \\ & I_{2}=y_{21} V_{1}+y_{22} V_{2}\end{aligned}$ for \vee_{1} and \vee_{2}.
Then compare the coefficients of I_{1} and I_{2} in the resulting expressions to the coefficients of I_{1} and I_{2} in
Eqs. (42-1) $\begin{aligned} & V_{1}=Z_{11} I_{1}+z_{12} I_{2} \\ & V_{2}=Z_{21} I_{1}+Z_{22} I_{2}\end{aligned}$. From Eqs. (42-2) we have:
$V_{1}=\frac{\left|\begin{array}{ll}I_{1} & y_{12} \\ I_{2} & y_{22}\end{array}\right|}{\left|\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right|}=\frac{y_{22}}{\Delta y} I_{1}-\frac{y_{12}}{\Delta y} I_{2} \quad(43-13) \quad V_{2}=\frac{\left|\begin{array}{ll}y_{11} & I_{1} \\ y_{21} & I_{2}\end{array}\right|}{\left|\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right|}=\frac{y_{21}}{\Delta y} I_{1}-\frac{y_{11}}{\Delta y} I_{2}$
comparing (43-13) and (43-14) with (42-1) shows:
$z_{11}=\frac{y_{22}}{\Delta y}$

$z_{21}=-\frac{y_{21}}{\Delta y}(43-17) \quad z_{22}=\frac{y_{11}}{\Delta y}$

To find z-parameters as a function of the a-parameters, we rearrange Eqs. (43-7) in the form of Eqs. (42-1) and then compare the coefficients. From the second equation in (42-5):

$$
\begin{equation*}
V_{2}=\frac{1}{a_{21}} I_{1}+\frac{a_{22}}{a_{21}} I_{2} \tag{43-19}
\end{equation*}
$$

therefore, substituting Eq. (43-19) into the first equation of Eqs. (42-5) yields

$$
\begin{equation*}
V_{1}=\frac{a_{11}}{a_{21}} I_{1}+\left(\frac{a_{11} a_{22}}{a_{21}}-a_{12}\right) I_{2} \tag{43-20}
\end{equation*}
$$

From Eq. (43-20) $\quad z_{11}=\frac{a_{11}}{a_{21}}(43-21) \quad Z_{12}=\frac{\Delta a}{a_{21}} \quad(43-22)$
From Eq. (43-19) $Z_{21}=\frac{1}{a_{21}}(43-23) \quad Z_{22}=\frac{a_{22}}{a_{21}} \quad(43-24)$

Example 43-3

Two sets of measurements are made on a two-port resistive circuit. The first set is made with port 2 open, and the second set is made with port 2 short-circuited. The results are as follows:
Port 2 Open
Port 2 Short Circuited
$V_{1}=10 \mathrm{mV}$
$V_{1}=24 m V$
$I_{1}=10 \mu \mathrm{~A}$
$I_{1}=20 \mu \mathrm{~A}$
$V_{2}=-40 \mathrm{~V}$

$$
I_{2}=1 m A
$$

Find the h parameters of the circuit.
Solution:
From the short circuit test: $h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}=\frac{24 \times 10^{-3}}{20 \times 10^{-6}}=1.2 \mathrm{k} \Omega$ and $h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}=\frac{10^{-3}}{20 \times 10^{-6}}=50$
h_{12} and h_{22} cannot be obtained directly from the open circuit test. However we can obtain them from aparameters either from a conversion table or through a similar procedure as seen in previous slides in this lecture. We get $h_{12}=\frac{\Delta a}{a_{22}}, h_{22}=\frac{a_{21}}{a_{22}}$ The a-parameters are
$a_{11}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}=\frac{10 \times 10^{-3}}{-40}=-0.25 \times 10^{-3}$

EE 205 Dr. A. Zidouri

$$
\begin{aligned}
& a_{21}=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}=\frac{10 \times 10^{-6}}{-40}=-0.25 \times 10^{-6} \mathrm{~S} \\
& a_{12}=-\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0}=-\frac{24 \times 10^{-3}}{10^{-3}}=-24 \Omega \\
& a_{22}=-\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}=-\frac{20 \times 10^{-6}}{10^{-3}}=-20 \times 10^{-3} \text { which give } \Delta a=a_{11} a_{22}-a_{12} a_{21}=5 \times 10^{-6}-6 \times 10^{-6}=-10^{-6}
\end{aligned}
$$

Therefore $h_{12}=\frac{\Delta a}{a_{22}}=\frac{-10^{-6}}{-20 \times 10^{-3}}=5 \times 10^{-5}$ and $h_{22}=\frac{a_{21}}{a_{22}}=\frac{-0.25 \times 10^{-6}}{-20 \times 10^{-3}}=12.5 \mu \mathrm{~S}$

Reciprocal Two-Port Circuits

If a two-port circuit is reciprocal the following relationships exist among the port parameters:
$Z_{12}=Z_{21}$
$y_{12}=y_{21}$
$a_{11} a_{22}-a_{12} a_{21}=\Delta a=1$
(43-25)
$b_{11} b_{22}-b_{12} b_{21}=\Delta b=1$
$g_{12}=-g_{21}$

A two-port circuit is reciprocal if the interchange of an ideal voltage source at one port with an ideal ammeter at the other port produces the same ammeter reading.

Example 43-4

Fig. 42-4 A Reciprocal two-port Circuit
Fig. 42-5 The Circuit in Fig. 42-4 with the Voltage and Ammeter Interchanged
Consider the circuit of Fig. 43-5. When a voltage source of 15 V is applied to port ad, it produces a current of 1.75 A in the ammeter at port cd.
The ammeter current can be determined easily from V_{bd}
$\frac{V_{b d}}{60}+\frac{V_{b d}-15}{30}+\frac{V_{b d}}{20}=0 \quad(43-29)$ and $V_{b d}=5 V$ therefore $I=\frac{5}{20}+\frac{15}{10}=1.75 \mathrm{~A}$
If the voltage source and ammeter are interchanged the ammeter will still read 1.75 A . We verify this by solving the circuit of Fig. 43-6:
$\frac{V_{b d}}{60}+\frac{V_{b d}}{30}+\frac{V_{b d}-15}{20}=0 \quad(43-31)$ therefore $V_{b d}=7.5 \mathrm{~V}$ the current l_{ad} is

$$
\begin{equation*}
I_{a d}=\frac{7.5}{30}+\frac{15}{10}=1.75 \mathrm{~A} \tag{43-32}
\end{equation*}
$$

A reciprocal circuit is also symmetric, if its port can be interchanged without disturbing the values of the terminal currents and voltages. The following additional relationships will hold:
$Z_{11}=Z_{22}$
$y_{11}=y_{22}$
$h_{11} h_{22}-h_{12} h_{21}=\Delta h=1$
$g_{11} g_{22}-g_{12} g_{21}=\Delta g=1$

For a symmetric reciprocal circuit only two calculations or measurements are necessary to determine all the two-port parameters.

Self Test 43:

Two sets of measurements are made on a two-port network that is symmetric and reciprocal. The first set is made with port 2 open, and the second set is made with port 2 short-circuited as follows:

$$
\begin{array}{ll}
\text { Port } 2 \text { Open } & \text { Port } 2 \text { Short Circuited } \\
V_{1}=95 \mathrm{~V} & V_{1}=11.52 \mathrm{~V} \\
I_{1}=5 \mathrm{~A} & I_{2}=-2.72 \mathrm{~A}
\end{array}
$$

Calculate the z parameters of the two-port network.
Answer:
$z_{11}=z_{22}=19 \Omega \quad z_{12}=z_{21}=17 \Omega$

