Electric Circuits II

Frequency Selective Circuits (Filters) Bode Plots: Complex Poles and Zeros

Lecture #41

The material to be covered in this lecture is as follows:

- Bode Diagrams for Complex Poles and Zeros
- Straight-Line Amplitude Plots
- Correcting Straight-Line Amplitude Plots
- o Phase Angle Plots

After finishing this lecture you should be able to:

- Use Bode Diagrams for Complex Poles and Zeros
- > Draw Straight-Line Approximation of the Amplitude Plot for a Pair of Complex Poles (Zeros)
- Draw Straight-Line Approximation of the Phase Angle Plot
- Correct the plots for a Pair of Complex Poles (Zeros)

Bode Diagrams for Complex Poles and Zeros

 \downarrow The complex poles and zeros of H(s) always appear in conjugate pairs

- 4 Always combine the conjugate pair into a single quadratic term
- 4 Once the rules for handling poles is understood, their application to zeros becomes apparent.

Let's consider $H(s) = \frac{K}{(s+\alpha-j\beta)(s+\alpha+j\beta)}$ (41-1)

The product $(s+\alpha-j\beta)(s+\alpha+j\beta)$ can be written as:

$$(s+\alpha)^{2} + \beta^{2} = s^{2} + 2\alpha s + \alpha^{2} + \beta^{2}$$
(41-2)
or $s^{2} + 2\alpha s + \alpha^{2} + \beta^{2} = s^{2} + 2\zeta \omega_{n} s + \omega_{n}^{2}$ (41-3)
where $\omega_{n}^{2} = \alpha^{2} + \beta^{2}$ (41-4) and $\zeta \omega_{n} = \alpha$ (41-5)

The term \mathcal{O}_n is the corner frequency of the quadratic factor

The term ζ is the damping coefficient of the quadratic factor,

♦ if $\zeta < 1$ the roots are complex

♦ if $\zeta > 1$ the roots are real,

• if $\zeta = 1$ this is the critical value.

For real roots we treat them as we have seen in previous lecture (Lec#40).

Assume $\zeta < 1$ then $H(s) = \frac{K}{s^2 + 2\zeta \omega_n s + \omega_n^2}$ (41-5)

$$\begin{split} H(s) &= \frac{K}{\omega_n^2} \frac{1}{1 + 2\zeta\left(\frac{s}{\omega_n}\right) + \left(\frac{s}{\omega_n}\right)^2} \text{ (41-6) in standard form will be } H(s) = \frac{K}{\omega_n^2} \frac{1}{1 + \left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right)} \text{ (41-7)} \\ H(j\omega) &= \frac{K_0}{1 - \left(\frac{\omega^2}{\omega_n^2}\right) + j\left(\frac{2\zeta\omega}{\omega_n}\right)} \text{ (41-8) where } K_0 = \frac{K}{\omega_n^2} \\ \text{Let } u &= \frac{\omega}{\omega_n} \text{ then } H(j\omega) = \frac{K_0}{1 - u^2 + j2\zeta u} \text{ (41-9) in polar form } H(j\omega) = \frac{K_0}{\left|1 - u^2 + j2\zeta u\right| \le \beta_1} \text{ (41-10)} \\ \text{From which: } A_{uu} = 20\log_{10} \left|H(jw)\right| = 20\log_{10} K_0 - 20\log_{10} \left[\left(1 - u^2\right)^2 + \left(2\zeta u\right)^2\right]^{\frac{1}{2}} \text{ (41-11)} \\ -20\log_{10} \left[\left(1 - u^2\right)^2 + \left(2\zeta u\right)^2\right]^{\frac{1}{2}} = -10\log_{10} \left[u^4 + 2u^2\left(2\zeta^2 - 1\right) + 1\right] \text{ (41-12)} \\ \text{and } \theta(\omega) &= -\beta_1 = -\tan^{-1} \frac{2\zeta u}{1 - u^2} \text{ (41-13)} \end{split}$$

- 5 -

Approximate Amplitude Plots $A_{dB} = 20\log_{10} K_0 - 10\log_{10} \left[u^4 + 2u^2 \left(2\zeta^2 - 1 \right) + 1 \right]$ Because $u = \frac{\omega}{\omega_n}$ therefore $u \to 0$ as $\omega \to 0$ and $u \to \infty$ as $\omega \to \infty$ thus: $-10\log_{10} \left[u^4 + 2u^2 \left(2\zeta^2 - 1 \right) + 1 \right] \to 0$ as $u \to 0$ $-10\log_{10} \left[u^4 + 2u^2 \left(2\zeta^2 - 1 \right) + 1 \right] \to -40\log_{10} u$ as $u \to \infty$

Adb 20 -20 -20 -40 -40 -60 -70-70

Correcting Straight-Line Amplitude Plots:

- Correcting the straight-line amplitude plot for a pair of complex poles is not as easy as correcting a first-order real pole, because the corrections depend on the damping coefficient ζ
- 4 The straight-line amplitude plot can be corrected by locating four points on the actual curve:

• Point 1 at ½ the corner frequency $\frac{\omega}{\omega_{C}} = \frac{1}{2} = \frac{\omega}{\omega_{n}} = u \text{ then } \left[u^{4} + 2u^{2} \left(2\zeta^{2} - 1 \right) + 1 \right] = \frac{1}{8} + \frac{1}{2} \left(2\zeta^{2} - 1 \right) + 1 = \zeta^{2} + \frac{5}{8}$ $A_{dB} \left(\omega_{n}/2 \right) = -10 \log_{10} \left(\zeta^{2} + 0.5625 \right)$ • Point 2 at peak amplitude frequency The amplitude peaks at $\omega_{p} = \omega_{n} \sqrt{1 - 2\zeta^{2}} = u$, thus $A_{dB} \left(\omega_{p} \right) = -10 \log_{10} \left(4\zeta^{2} \left(1 - \zeta^{2} \right) \right)$ • Point 3 at the corner frequency $\frac{\omega}{\omega_{n}} = u = 1$ $A_{dB} \left(\omega_{n} \right) = -10 \log_{10} 4\zeta^{2} \text{ or } A_{dB} \left(\omega_{n} \right) = -20 \log_{10} 2\zeta$ • Point 4 at zero amplitude frequency $\omega_{0} = \omega_{n} \sqrt{2 \left(1 - 2\zeta^{2} \right)} = \sqrt{2} \omega p$

Example 41-1

Compute the transfer function for the circuit shown in Fig. 41-3

- a) Find the corner frequency \mathcal{O}_n ,
- b) The value of K_0 ,
- c) The damping coefficient ζ
- d) Make a straight line amplitude plot ranging from 10 to 500 rad/s.
- e) Sketch the actual corrected amplitude in dB at $\omega_n/2$, ω_p , ω_n , and ω_0 .
- f) Describe the type of filter represented by the circuit in Fig. 41-3

Solution:

Transforming to s domain $H(s) = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}} = \frac{2500}{s^2 + 20s + 2500}$ a) from the expression of H(s), $\omega_n^2 = 2500$, therefore $\omega_n = 50 rad/s$ b) By definition $K_0 = \frac{2500}{\omega_n^2}$ or 1

c) The coefficient of s is
$$2\zeta \omega_n$$
 therefore $\zeta = \frac{20}{2\omega_n} = 0.20$

- d) See Fig. 41-4
- e) The actual amplitudes are

$$A_{dB}(\omega_{n}/2) = -10\log_{10}(0.6025) = 2.2dB$$

$$\omega_{p} = 50\sqrt{0.92} = 47.96 rad/s \qquad A_{dB}(\omega_{p}) = -10\log_{10}(0.16)(0.96) = 8.14dB$$

$$A_{dB}(\omega_{n}) = -20\log_{10}(0.4) = 7.96dB$$

$$\omega_{0} = \sqrt{2}\omega_{p} = 67.82dB \qquad A_{dB}(\omega_{0}) = 0dB$$

Fig. 41-4 shows the corrected plot.

f) From the plot we see that this filter is a LPF, its cutoff frequency appears to be 55rad/s almost the same as that predicted by the straight-line approximation.

Phase Angle Plots

- > The phase angle is zero at zero frequency
- > The phase angle is -90° at corner frequency
- > The phase angle is -180° at large frequency as $\omega \rightarrow \infty$
- \downarrow For small values of ζ , the phase angle changes rapidly in the vicinity of the corner frequency.
- ↓ The line tangent to the phase angle curve at -90° has a slope of -2.3/ζ rad/decade or -132/ζ degree/decade and it intersects the 0° and -180° lines at $u_1 = 4.81^{-\zeta}$ and $u_2 = 4.81^{\zeta}$ respectively.
- **4** Fig. 41-5 depicts the straight-line approximation for $\zeta = 0.3$ and shows the actual phase angle plot.

Self Test 41:

The numerical expression for a transfer function is $H(s) = \frac{25 \times 10^8}{s^2 + 20 \times 10^3 s + 25 \times 10^8}$

- Compute the corner frequency,
- the damping coefficient,
- ✓ frequencies when H(jω) is unity,
- peak amplitude of $H(j\omega)$ in dB,
- ✓ frequency at which the peak occurs, and
- amplitude of $H(j\omega)$ at half the corner frequency.

Answer:

$$\checkmark \quad \omega_C = 50 krad/s, \\ \checkmark \quad \zeta = 0.2,$$

- ✓ 0, 67.82*krad/s*
- ✓ 8.14dB,
- ✓ 47.96*krad/s*
- ✓ 2.20dB