Electric Circuits II

Frequency Selective Circuits (Filters) Bode Plots: Complex Poles and Zeros

Lecture \#41

The material to be covered in this lecture is as follows:
o Bode Diagrams for Complex Poles and Zeros
o Straight-Line Amplitude Plots
o Correcting Straight-Line Amplitude Plots
o Phase Angle Plots

After finishing this lecture you should be able to:
> Use Bode Diagrams for Complex Poles and Zeros
> Draw Straight-Line Approximation of the Amplitude Plot for a Pair of Complex Poles (Zeros)
> Draw Straight-Line Approximation of the Phase Angle Plot
$>$ Correct the plots for a Pair of Complex Poles (Zeros)

Bode Diagrams for Complex Poles and Zeros

\& The complex poles and zeros of H(s) always appear in conjugate pairs

* Always combine the conjugate pair into a single quadratic term
$\$$ Once the rules for handling poles is understood, their application to zeros becomes apparent.
Let's consider $H(S)=\frac{K}{(s+\alpha-j \beta)(s+\alpha+j \beta)}$
The product $(s+\alpha-j \beta)(s+\alpha+j \beta)$ can be written as:
$(s+\alpha)^{2}+\beta^{2}=s^{2}+2 \alpha s+\alpha^{2}+\beta^{2}$
or $s^{2}+2 \alpha s+\alpha^{2}+\beta^{2}=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}$
where $\omega_{n}^{2}=\alpha^{2}+\beta^{2}(41-4) \quad$ and $\zeta \omega_{n}=\alpha$
The term ω_{n} is the corner frequency of the quadratic factor
The term ζ is the damping coefficient of the quadratic factor,
* if $\zeta<1$ the roots are complex
* if $\zeta>1$ the roots are real,
* if $\zeta=1$ this is the critical value.

For real roots we treat them as we have seen in previous lecture (Lec\#40).
Assume $\zeta<1$ then $H(S)=\frac{K}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$
$H(S)=\frac{K}{\omega_{n}^{2}} \frac{1}{1+2 \zeta\left(\frac{s}{\omega_{n}}\right)+\left(\frac{s}{\omega_{n}}\right)^{2}}(41-6)$ in standard form will be $H(S)=\frac{K}{\omega_{n}^{2}} \frac{1}{1+\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)}(41-7)$
$H(j \omega)=\frac{K_{0}}{1-\left(\frac{\omega^{2}}{\omega_{n}^{2}}\right)+j\left(\frac{2 \zeta \omega}{\omega_{n}}\right)} \quad$ (41-8) where $\quad K_{0}=\frac{K}{\omega_{n}^{2}}$
Let $u=\frac{\omega}{\omega_{n}}$ then $H(j \omega)=\frac{K_{0}}{1-u^{2}+j 2 \zeta u}(41-9)$ in polar form $H(j \omega)=\frac{K_{0}}{\left|1-u^{2}+j 2 \zeta u\right| \angle \beta_{1}}(41-10)$
From which: $A_{u B}=20 \log _{10}|H(j w)|=20 \log _{10} K_{0}-20 \log _{10}\left(\left(1-u^{2}\right)^{2}+(2 \zeta u)^{2}\right)^{\frac{1}{2}}$

$$
\begin{equation*}
-20 \log _{10}\left(\left(1-u^{2}\right)^{2}+(2 \zeta u)^{2}\right)^{\frac{1}{2}}=-10 \log _{10}\left[u^{4}+2 u^{2}\left(2 \zeta^{2}-1\right)+1\right] \tag{41-12}
\end{equation*}
$$

and $\theta(\omega)=-\beta_{1}=-\tan ^{-1} \frac{2 \zeta u}{1-u^{2}}$

Approximate Amplitude Plots
$A_{d B}=20 \log _{10} K_{0}-10 \log _{10}\left[u^{4}+2 u^{2}\left(2 \zeta^{2}-1\right)+1\right]$
Because $u=\frac{\omega}{\omega_{n}}$ therefore $u \rightarrow 0$ as $\omega \rightarrow 0$ and $u \rightarrow \infty$ as $\omega \rightarrow \infty$ thus:
$-10 \log _{10}\left[u^{4}+2 u^{2}\left(2 \zeta^{2}-1\right)+1\right] \rightarrow 0 \quad$ as $\quad u \rightarrow 0$
$-10 \log _{10}\left[u^{4}+2 u^{2}\left(2 \zeta^{2}-1\right)+1\right] \rightarrow-40 \log _{10} u$
as

$$
u \rightarrow \infty
$$

We conclude that the approximate amplitude plot consists of two straight lines.
oFor frequencies $\omega<\omega_{n}$ the straight line has a slope of 0 dB
o For frequencies $\omega>\omega_{n}$ the straight line has a slope of $-40 \mathrm{~dB} / \mathrm{decade}$.
These two straight lines join on the 0 dB axis at $\mathrm{u}=1$ or $\omega=\omega_{n}$. Fig. 41-1 shows the straight line approximation for a quadratic factor with $\zeta<1$.

Fig. 41-1 the amplitude plot for a pair of complex poles

Correcting Straight-Line Amplitude Plots:

$\$$ Correcting the straight-line amplitude plot for a pair of complex poles is not as easy as correcting a first-order real pole, because the corrections depend on the damping coefficient ζ

* The straight-line amplitude plot can be corrected by locating four points on the actual curve:
o Point 1 at $1 / 2$ the corner frequency

$$
\begin{aligned}
& \frac{\omega}{\omega_{C}}=\frac{1}{2}=\frac{\omega}{\omega_{n}}=u \text { then }\left[u^{4}+2 u^{2}\left(2 \zeta^{2}-1\right)+1\right]=\frac{1}{8}+\frac{1}{2}\left(2 \zeta^{2}-1\right)+1=\zeta^{2}+\frac{5}{8} \\
& A_{d B}\left(\omega_{n} / 2\right)=-10 \log _{10}\left(\zeta^{2}+0.5625\right)
\end{aligned}
$$

o Point 2 at peak amplitude frequency
The amplitude peaks at $\omega_{p}=\omega_{n} \sqrt{1-2 \zeta^{2}}=u$, thus $A_{d B}\left(\omega_{p}\right)=-10 \log _{10}\left(4 \zeta^{2}\left(1-\zeta^{2}\right)\right)$
o Point 3 at the corner frequency $\frac{\omega}{\omega_{n}}=u=1$
$A_{d B}\left(\omega_{n}\right)=-10 \log _{10} 4 \zeta^{2}$ or $A_{d B}\left(\omega_{n}\right)=-20 \log _{10} 2 \zeta$
o Point 4 at zero amplitude frequency

$$
\omega_{0}=\omega_{n} \sqrt{2\left(1-2 \zeta^{2}\right)}=\sqrt{2} \omega p
$$

EE 205 Dr. A. Zidouri

Fig. 41-4 the amplitude plot for Example 41-1

Example 41-1

Compute the transfer function for the circuit shown in Fig. 41-3
a) Find the corner frequency ω_{n},
b) The value of K_{0},
c) The damping coefficient ζ
d) Make a straight line amplitude plot ranging from 10 to 500 rad/s.
e) Sketch the actual corrected amplitude in dB at $\omega_{n / 2}, \omega_{p}, \omega_{n}$, and ω_{0}.

f) Describe the type of filter represented by the circuit in Fig. 41-3

Solution:

Transforming to s domain $H(s)=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} S+\frac{1}{L C}}=\frac{2500}{s^{2}+20 s+2500}$
a) from the expression of $\mathrm{H}(\mathrm{s}), \omega_{n}^{2}=2500$, therefore $\omega_{n}=50 \mathrm{rad} / \mathrm{s}$
b) By definition $K_{0}=\frac{2500}{\omega_{n}^{2}}$ or 1
c) The coefficient of s is $2 \zeta \omega_{n}$ therefore $\zeta=\frac{20}{2 \omega_{n}}=0.20$
d) See Fig. 41-4
e) The actual amplitudes are

$$
\begin{aligned}
& A_{U B}\left(\omega_{n} / 2\right)=-10 \log _{10}(0.6025)=2.2 d B \\
& \omega_{p}=50 \sqrt{0.92}=47.96 \mathrm{rad} / \mathrm{s} \quad A_{U B}\left(\omega_{p}\right)=-10 \log _{10}(0.16)(0.96)=8.14 d B \\
& A_{U B}\left(\omega_{n}\right)=-20 \log _{10}(0.4)=7.96 d B \\
& \quad \omega_{0}=\sqrt{2} \omega_{p}=67.82 d B \quad A_{U B}\left(\omega_{0}\right)=0 d B
\end{aligned}
$$

Fig. 41-4 shows the corrected plot.
f) From the plot we see that this filter is a LPF, its cutoff frequency appears to be 55rad/s almost the same as that predicted by the straight-line approximation.

Phase Angle Plots

> The phase angle is zero at zero frequency
$>$ The phase angle is -90° at corner frequency
$>$ The phase angle is -180° at large frequency as $\omega \rightarrow \infty$
4 For small values of ζ, the phase angle changes rapidly in the vicinity of the corner frequency.
4 The line tangent to the phase angle curve at -90° has a slope of $-2.3 / \zeta \mathrm{rad} / \mathrm{decade}$ or $-132 / \mathrm{\zeta}$ degree/decade and it intersects the 0° and -180° lines at $u_{1}=4.81^{-\zeta}$ and $u_{2}=4.81^{5}$ respectively.

* Fig. 41-5 depicts the straight-line approximation for $\zeta=0.3$ and shows the actual phase angle plot.

Fig. 41-5 Straight-Line Approximation of the Phase Angle
for a pair of complex poles

Self Test 41:

The numerical expression for a transfer function is $H(S)=\frac{25 \times 10^{8}}{S^{2}+20 \times 10^{3} S+25 \times 10^{8}}$
\checkmark Compute the corner frequency,
\checkmark the damping coefficient,
\checkmark frequencies when $H(j \omega)$ is unity,
\checkmark peak amplitude of $H(j \omega)$ in dB ,
\checkmark frequency at which the peak occurs, and
\checkmark amplitude of $H(j \omega)$ at half the corner frequency.
Answer:
$\checkmark \omega_{C}=50 \mathrm{krad} / \mathrm{s}$,
$\checkmark \zeta=0.2$,
$\checkmark 0,67.82 \mathrm{krad} / \mathrm{s}$
\checkmark 8.14dB,
$\checkmark 47.96 \mathrm{krad} / \mathrm{s}$
$\checkmark 2.20 \mathrm{~dB}$

