Electric Circuits II

Frequency Selective Circuits (Filters) Bode Plots

Lecture \#40

The material to be covered in this lecture is as follows:
o Introduction to Bode Diagrams
o First order Poles and Zeros
o Straight-Line Amplitude Plots
o Corrected Amplitude Plots
o Straight-Line Phase Angle Plots

After finishing this lecture you should be able to:
> Appreciate the usefulness of Bode Diagrams
$>$ Draw Straight-Line Approximation of the Amplitude Plot of a First Order Pole or Zero
$>$ Draw Straight-Line Approximation of the Phase Angle Plot of a First Order Pole or Zero
$>$ Correct the plots for a First Order Pole and Zero

Introduction to Bode Diagrams

\# Bode Diagram or plot is a graphical technique that gives a feel for the frequency response of a circuit

* A Bode Diagram consists of two separate plots:

1) Shows how amplitude of $H(j \omega)$ varies with frequency,
2) Shows how the phase angle of $H(j \omega)$ varies with frequency,

4 The plots are made on semilog graph paper for greater accuracy in representing the wide range of frequency values.

Real First Order Poles and Zeroes:
Given the following expression: $\quad H(s)=\frac{K\left(s+z_{1}\right)}{s\left(s+p_{1}\right)}$
Replacing $s=j \omega$ becomes $H(j \omega)=\frac{K\left(j \omega+z_{1}\right)}{j \omega\left(j \omega+p_{1}\right)}$
The first step in making Bode Diagram is to put (40-2) in a Standard Form:

$$
\begin{equation*}
H(j \omega)=\frac{K z_{1}\left(1+j \omega / z_{1}\right)}{p_{1}(j \omega)\left(1+j \omega / p_{1}\right)} \tag{40-3}
\end{equation*}
$$

Let $\frac{K z_{1}}{p_{1}}=K_{0}$ therefore (40-3) becomes $H(j \omega)=\frac{K_{0}\left(1+j \omega / z_{1}\right)}{(j \omega)\left(1+j \omega / p_{1}\right)} \quad$ (40-4)

In polar form:

$$
\begin{align*}
& H(j \omega)=\frac{K_{0}\left|1+j \omega / z_{1}\right| \angle \psi_{1}}{|\omega| \angle 90^{\circ}\left|+j \omega / p_{1}\right| \angle \beta_{1}} \\
& =\frac{K_{0}\left|1+j \omega / z_{1}\right| \angle\left(\psi_{1}-90^{\circ}-\beta_{1}\right)}{|\omega| 1+j \omega / p_{1} \mid} \tag{40-5}
\end{align*}
$$

From (40-5) we get: $|H(j \omega)|=\frac{K_{0}\left|1+j \omega / z_{1}\right|}{|\omega|\left|1+j \omega / p_{1}\right|}(40-6)$ and $\theta(\omega)=\psi_{1}-90^{\circ}-\beta_{1}$

$$
\psi_{1}=\tan ^{-1} \frac{\omega}{z_{1}}(40-8) \text { and } \beta_{1}=\tan ^{-1} \frac{\omega}{p_{1}}(40-9)
$$

(40-7) where:

Straight-Line Amplitude Plots

4 The amplitude plot involves the multiplication and division of factors associated with the poles and zeros of $H(s)$. We reduce this multiplication and division to addition and subtraction by expressing the amplitude of $H(j \omega)$ in terms of a logarithmic value: the decibel (dB).

$$
A_{d B}=20 \log _{10}|H(j \omega)|
$$

Expressing (40-6) in dB gives: $A_{d B}=20 \log _{10} \frac{K_{0}\left|1+j \omega / z_{1}\right|}{\omega\left|1+j \omega / p_{1}\right|}$

$$
\begin{equation*}
=20 \log _{10} K_{0}+20 \log _{10}\left|1+j \omega / z_{1}\right|-20 \log _{10} \omega-20 \log _{10}\left|1+j \omega / p_{1}\right| \tag{40-11}
\end{equation*}
$$

* The key to plotting (40-11) is to plot each term separately and then combine the separate plots graphically.
* The plot of $20 \log _{10} K_{0}$ is a horizontal straight line
o positive if $K_{0}>1$
o zero $K_{0}=1$
0 negative if $K_{0}<1$
* The plot of $20 \log _{10} 1+j \omega / z_{1}$ is approximated by two straight lines

$$
\begin{array}{ll}
0 \quad 20 \log _{10}\left|1+j \omega / z_{1}\right| & \rightarrow 0 \text { as } \omega \rightarrow 0 \\
\text { o } 20 \log _{10}\left|1+j \omega / z_{1}\right| & \rightarrow 20 \log _{10}\left(\omega / z_{1}\right) \text { as } \omega \rightarrow \infty \tag{40-13}
\end{array}
$$

\& On a log frequency scale, $20 \log _{10}\left(\omega / z_{1}\right)$ is a straight line with a slope of $20 \mathrm{~dB} /$ decade. (A decade is a 10-to-1 change in frequency)

* The two straight lines intersect the 0 dB axis at $\omega=z_{1}$. This value of ω is called the corner frequency.
* The plot of $-20 \log _{10} \omega$ is a straight line having a slope of $-20 d B /$ decade that intersects the 0 dB axis at $\omega=1$. Fig. 40-1 shows a straight-line approximation of the amplitude plot of a first order zero.

Fig. 40-1 A Straight-line Approximation of the amplitude plot of a first-order zero

* The plot of $-20 \log _{10}\left|1+j \omega / p_{1}\right|$ is approximated by two straight lines

$$
\begin{array}{ll}
0-20 \log _{10}\left|1+j \omega / p_{1}\right| & \rightarrow 0 \text { as } \omega \rightarrow 0 \\
0 & -20 \log _{10}\left|1+j \omega / p_{1}\right| \tag{40-15}
\end{array} \rightarrow-20 \log _{10}\left(\omega / p_{1}\right) \text { as } \omega \rightarrow \infty
$$

\pm On a log frequency scale, $-20 \log _{10}\left(\omega / p_{1}\right)$ is a straight line with a slope of $-20 \mathrm{~dB} /$ decade

* The two straight lines intersect on the 0 dB axis at $\omega=p_{1}$, (the corner frequency). Fig. 40-2 shows a straight-line approximation of the amplitude plot of a first order pole.

Fig. 40-2 A Straight-line Approximation of the amplitude plot of a first-order pole

EE 205 Dr. A. Zidouri

Example 40-1

Plot the amplitude straight-line approximation of the TF for Equation (40-6). Take $z_{1}=0.1 \mathrm{rad} / \mathrm{s}$,

$$
K_{0}=\sqrt{10}, p_{1}=5 \mathrm{rad} / \mathrm{s}
$$

Fig. 40-3 A Straight-line Approximation of the amplitude plot
for Equation (40-6)

Example 40-2

For the circuit in Fig. $40-4, L=100 \mathrm{mH}, \mathrm{C}=10 \mathrm{mF}, R=11 \Omega$
a) Compute the transfer function, $\mathrm{H}(\mathrm{s})$
b) Construct a straight-line approximation of the Bode amplitude plot.
c) Calculate $20 \log _{10} \mid H(j \omega)$ at $\omega=50 \mathrm{rad} / \mathrm{s} \mathrm{rad} / \mathrm{s}$ and $\omega=1000 \mathrm{rad} / \mathrm{s}$
d) Plot the values computed in (c) on the straight-line graph
e) Suppose $V_{i}(t)=5 \cos \left(500 t+15^{\circ}\right) V$ then use the Bode

Fig. 40-4 The circuit for Example 40-2 Plot you construct to predict amplitude of $v_{0}(t)$ in the steady-state
Solution:
a) $V_{i}(s)=\left(L s+\frac{1}{s C}+R\right) I(s)=\frac{L}{S}\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right) I(s)$
$V_{o}(s)=R I(s) \Rightarrow I(s)=\frac{V_{o}(s)}{R}$ thus $V_{i}(s)=\frac{L}{R S}\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right) V_{o}(s)$ therefore $H(s)=\frac{\frac{R}{L} S}{S^{2}+\frac{R}{L} S+\frac{1}{L C}}$

EE 205 Dr. A. Zidouri

b) $H(s)=\frac{\frac{R}{L} s}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}=\frac{110 s}{s^{2}+110 s+1000}=\frac{110 s}{(s+10)(s+100)}$ replacing $s=j \omega$
$H(j \omega)=\frac{110}{(10)(100)} \frac{j \omega}{\left(1+\frac{j \omega}{10}\right)\left(1+\frac{j \omega}{100}\right)}=\frac{0.11 j \omega}{\left(1+\frac{j \omega}{10}\right)\left(1+\frac{j \omega}{100}\right)}$
$A_{d B}=20 \log _{10}|H(j \omega)|=20 \log _{10} 0.11+20 \log _{10}|j \omega|-20 \log _{10}\left|1+\frac{j \omega}{10}\right|-20 \log _{10}\left|1+\frac{j \omega}{100}\right|$
c) we have $H(j 50)=\frac{0.11(j 50)}{(1+j 5)(1+j 0.5)}=0.9648 \angle-15.25^{\circ}$,
$20 \log _{10}|H(j 50)|=20 \log _{10} 0.9648=-0.3116 d B$,
$H(j 1000)=\frac{0.11(j 1000)}{(1+j 100)(1+j 10)}=0.1094 \angle-83.72^{\circ}$,
$20 \log _{10} 0.1094=-19.22 \mathrm{~dB}$.
d) See Fig. 40-5

Fig. 40-5 A Straight-line Approximation of the amplitude plot
for the Circuit in Fig. 40-4
e) we can see from the Bode plot in Fig. 40-5, the value of $A_{d B} \simeq-12.5 \mathrm{~dB}$ at $\omega=500 \mathrm{rad} / \mathrm{s}$ therefore $|A|=10^{(-12.5 / 20)}=0.24$ and $V_{m o}=|A| V_{m i}=0.24 \times 5=1.19 \mathrm{~V}$

We can compute the actual value of $H(j \omega)$ by substituting $\omega=500 \mathrm{rad} / \mathrm{s}$ into the equation for $|H(j \omega)|$ therefore $H(j 500)=\frac{0.11(j 500)}{(1+j 50)(1+j 5)}=0.22 \angle-77.54^{\circ}$ and $V_{m o}=|A| V_{m i}=0.22 \times 5=1.1 \mathrm{~V}$
More Accurate Amplitude Plots
We can make the straight-line plots for first order poles and zeros more accurate by correcting the amplitude values at the corner frequency.
The actual value at the corner frequency in decibels is: $A_{d B_{c}}= \pm 20 \log _{10}|1+j 1|= \pm 20 \log _{10} 2 \simeq \pm 3 \mathrm{~dB}$
The actual value at half the corner frequency is: $A_{d B_{d / 2}}= \pm 20 \log _{10}\left|1+j \frac{1}{2}\right|= \pm 20 \log _{10} \sqrt{5 / 4} \simeq \pm 1 d B$
The actual value at twice the corner frequency is: $A_{U_{B 2 C}}= \pm 20 \log _{10}|1+j 2|= \pm 20 \log _{10} \sqrt{5} \simeq \pm 7 \mathrm{~dB}$
A 2-to-1 change in frequency is called an octave. A slope of $20 \mathrm{~dB} /$ decade is equivalent to $6 \mathrm{~dB} /$ octave .

EE 205 Dr. A. Zidouri

Fig. 40-6 Corrected amplitude plots for a first order zero and pole

Straight-Line Phase Angle Plots

We can also make phase angle plots by using straight-line approximation
oPhase angle for $K_{0}>0$ is 0 degree
oPhase angle for $\mathrm{K}_{0}<0$ is 180 degree
4 Phase angle associated with a first order zero or a pole at origin is a constant $\pm 90^{\circ}$ degree

* For a first order pole or zero not at origin, the straight line approximation are as follows;
oFor frequencies $\omega \leq \frac{\omega_{C}}{10} \quad \rightarrow \phi= \pm \tan ^{-1} 0.1=0^{\circ}$
o For frequencies $\omega=\omega_{C} \quad \rightarrow \phi= \pm \tan ^{-1} 1= \pm 45^{\circ}$
oFor frequencies $\omega \geq 10 \omega_{C} \quad \rightarrow \phi= \pm \tan ^{-1} 10= \pm 90^{\circ}$
(The signs are + for zeros and - for poles in all the above)

4 Fig. 40-7 depicts the straight-line approximation for a first order zero and pole. The dashed curves show the exact variation of the phase angle as ω varies.

* The maximum deviation between the straight-line and the actual plot is approximately 6°. Fig. 40-8 depicts the straight-line approximation of the phase angle equ. (40-7) of the TF of equ. (40-1) with $z_{1}=0.1 \mathrm{rad} / \mathrm{s}$

$$
, p_{1}=5 \mathrm{rad} / \mathrm{s}
$$

$p_{1}=5 \mathrm{rad} / \mathrm{s}$

EE 205 Dr. A. Zidouri

Self Test 40

The numerical expression for a transfer function is $H(s)=\frac{(10 s+3)}{15 s(s+2)}$ Make a straight-line amplitude and phase angle plots for $H(s)$
Answer:

Fig. 40-9 A Straight-line Approximation of the amplitude plot for self test 40

Fig. 40-10 a straight-line approximation of the Phase angle plot for self test 40

