Electric Circuits II

Frequency Selective Circuits (Filters) Some Preliminaries

Lecture #35

The material to be covered in this lecture is as follows:

- o Introduction to Filters
- The Main Four Types of Filter Circuits
- The Filter Transfer Function
- Magnitude Plot and Phase Angle Plot

After finishing this lecture you should be able to:

- > Understand the Behavior of Filters
- Determine the

Introduction to Filters

Filter Types

- Filters Attenuate (Weaken) The Effect Of Any Input Signals With Frequencies Outside A Particular Frequency Band (Range)
- **We Will Restrict Our Study Here To Sinusoidal Signals Only (Voltages)**

g. 7-1 Filter Transmission to Voltage Signal

- 4 Identifying The Type Of Filter Is To Examine Its Frequency Response Plot
- **4** There Are Four Major Categories Of Filters Shown In Fig. 7-2
 - a. The Low-Pass Filter
 - b. The High-Pass Filter
 - c. The Band-Pass Filter
 - d. The Band-Stop Or Band-Reject Filter

Filter Types (cont)

Fig.7-2 Ideal Frequency Response Plots of The Four Types of Filter Circuits

Frequency Response

- The Frequency Response Plot Has Two Parts
 - Magnitude Plot
 - Phase Angle Plot
- **4** The Cutoff Frequency Separates the Passband from the Stopband
- The Signals Which are Passed from the Input to the Output Fall Within a Band of Frequencies Called the Passband
- **Frequencies Not in a Circuit's Passband are in its Stopband**
- Practical Filter Responses cannot Change its Characteristics from Passband to Stopband or vice versa in Zero Frequency. There should be some Transition Bands as well.

Filter Specifications

- **4** The Transmission of a Low-pass Filter as shown in Fig. 7-3 is Specified by four Parameters:
 - > The Passband edge, ω_p .
 - > The maximum allowed variation in Passband Transmission, A_{max}
 - > The Stopband edge, $\omega_{\rm S}$.
 - > The minimum required Stopband Attenuation, Amin

Filter Specifications (cont)

Fig.7-3 Specification of the transmission characteristics of a low-pass filter. The magnitude response of a filter that just meets specifications is also shown.

- \downarrow Selectivity factor = ω_p / ω_s
- Tighter specification means closer to ideal characteristics and more complex and expensive filter design

Filter Specifications (cont)

Fig.7-4 Transmission specification of a band-pass filter. The magnitude response of a filter that just meets specifications is also shown.

- **4** The transmission of a band-pass filter as shown in Fig. 7-4 is specified by six parameters:
 - > The Lower Passband edge, ω_{p1} .
 - > The Higher Passband edge, ω_{p2} .
 - > The maximum allowed variation in Passband Transmission, A_{max} .
 - > The Lower Stopband edge, ω_{S1} .
 - > The Higher Stopband edge, ω_{S2} .
 - The minimum required Stopband Attenuation, Amin.

Example 7.1

Consider the following circuit of Fig. 7-5:

Fig. 7-5 Circuit For Frequency Response Example

$$Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{R \frac{1}{j \omega C}}{R + \frac{1}{j \omega C}} = \frac{R}{1 + j \omega R C}$$
(7-1)

In polar form

$$\left|Z_{eq}\right| \le \theta = \frac{R}{\sqrt{1 + \left(\omega RC\right)^2}} \le -\tan^{-1}\omega RC$$
(7-2)

Since Z is complex the notation $Z(j\omega)$ is often used. Both |Z| and θ are function of ω .

- 9 -

Low-Pass Filter

Exploring Limiting Values (Cont) Determining the Polarity of the Voltage and Current Ratios Example 34-1 The state expressions for a) i_1 , b) v_1 , c) i_2 , d) v_2

> Fig.34-7 Circuit for Example 34-1 $V_g = 2500 \angle 0^\circ = (0.25 + j2)I_1 + V_1$ $V_1 = 10V_2 = 10[(0.2375 + j0.05)I_2]$

a)

and

The Use of Ideal Transformer for Impedance Matching

Self Test: The source