Electric Circuits II
The Ideal Transformer
Lecture \#34

EE 205 Dr. A. Zidouri

The material to be covered in this lecture is as follows:
o The Ideal Transformer
o Determining the Voltage and Current Ratios
o Rules For Assigning Proper Algebraic Sign For Relating The Voltage And Current
o Impedance Matching

After finishing this lecture you should be able to:
> Understand the Behavior of Ideal Transformers
$>$ Determine the polarity of the Voltage and Current Ratios
$>$ Analyze Circuits Containing Ideal Transformers
$>$ Use The Ideal Transformer For Impedance Matching

The Ideal Transformer

\# An ideal transformer consists of two magnetically coupled coils having N_{1} and N_{2} turns respectively, and exhibiting these three properties:
o The coefficient of coupling is unity $\mathrm{k}=1$,
o The self-inductance of each coil is infinite $L_{1}=L_{2}=\infty$
o The coil losses, due to parasitic resistance, are negligible.
4 Understanding the behavior of ideal transformers begins with equation (33-11) which describes the impedance $Z_{a b}$ we repeat this below

$$
\begin{equation*}
Z_{a b}=Z_{11}+\frac{\omega^{2} M^{2}}{Z_{22}}-Z_{S}=R_{1}+j \omega L_{1}+\frac{\omega^{2} M^{2}}{R_{2}+j \omega L_{2}+Z_{L}} \tag{34-1}
\end{equation*}
$$

\& Let us consider the same circuit as in Fig.33-1 of previous lecture

Fig.34-1 Frequency-domain model of a Linear Transformer

EE 205 Dr. A. Zidouri

Exploring Limiting Values

To show how $Z_{a b}$ changes when $k=1, L_{1}$ and L_{2} approach infinity we use the notation:

$$
\begin{equation*}
\mathbf{Z}_{22}=\mathrm{R}_{2}+\mathrm{R}_{\mathrm{L}}+\mathrm{j}\left(\omega \mathrm{~L}_{2}+\mathbf{X}_{\mathrm{L}}\right)=\mathrm{R}_{22}+j \mathbf{X}_{22} \tag{34-2}
\end{equation*}
$$

Then rearrange

$$
\begin{equation*}
Z_{a b}=\overbrace{R_{1}+\frac{\omega^{2} M^{2} R_{22}}{R_{22}^{2}+X_{22}^{2}}}^{R_{a b}}+j \overbrace{\left(\omega L_{1}-\frac{\omega^{2} M^{2} X_{22}}{R_{22}^{2}+X_{22}^{2}}\right)}^{X_{a b}} \tag{34-3}
\end{equation*}
$$

Before we let L_{1} and L_{2} increase, we write the coefficient as:

$$
\begin{equation*}
X_{a b}=\omega L_{1}-\frac{\omega L_{1} \omega L_{2} X_{22}}{R_{22}^{2}+X_{22}^{2}}=\omega L_{1}\left(1-\frac{\omega L_{2} X_{22}}{R_{22}^{2}+X_{22}^{2}}\right) \tag{34-4}
\end{equation*}
$$

EE 205 Dr. A. Zidouri

Exploring Limiting Values (Cont)

Using the fact that when, $k=1$ then $M^{2}=L_{1} L_{2}$
Putting the term multiplying ωL_{1}, over a common denominator gives

$$
\begin{equation*}
X_{a b}=\omega L_{1}\left(\frac{R_{22}^{2}+\omega L_{2} X_{L}+X_{L}^{2}}{R_{22}^{2}+X_{22}^{2}}\right) \tag{34-5}
\end{equation*}
$$

Factoring ωL_{2} out from numerator and denominator yields

$$
\begin{equation*}
X_{a b}=\frac{\omega^{2} L_{1} L_{2}}{\omega^{2} L_{2}^{2}}\left(\frac{X_{L}+\left(R_{22}^{2}+X_{L}^{2}\right) / \omega L_{2}}{R_{22}^{2} / \omega^{2} L_{2}^{2}+\left[1+\left(\frac{X_{L}}{\omega L_{2}}\right)^{2}\right]}\right) \tag{34-6}
\end{equation*}
$$

EE 205 Dr. A. Zidouri

Exploring Limiting Values (Cont)

$$
\begin{equation*}
X_{a b}=\frac{L_{1}}{L_{2}}\left(\frac{X_{L}+\left(R_{22}^{2}+X_{L}^{2}\right) / \omega L_{2}}{\left(\frac{R_{22}}{\omega L_{2}}\right)^{2}+\left[1+\left(\frac{X_{L}}{\omega L_{2}}\right)^{2}\right]}\right) \tag{34-7}
\end{equation*}
$$

As $k \rightarrow 1 \Rightarrow \frac{L_{1}}{L_{2}} \rightarrow$ constant value of $\left(\frac{N_{1}}{N_{2}}\right)^{2}$
The reason is that; as the coupling becomes extremely tight, the two permeances p_{1} and p_{2} become equal.
Therefore as $k \rightarrow 1, L_{1} \rightarrow \infty, L_{2} \rightarrow \infty$

$$
\begin{equation*}
X_{a b}=\left(\frac{N_{1}}{N_{2}}\right)^{2} X_{L} \tag{34-8}
\end{equation*}
$$

The same reasoning leads to simplification of the reflected resistance:

$$
\begin{equation*}
\frac{\omega^{2} M^{2} R_{22}}{R_{22}^{2}+X_{22}^{2}}=\frac{L_{1}}{L_{2}} R_{22}=\left(\frac{N_{1}}{N_{2}}\right)^{2} R_{22} \tag{34-9}
\end{equation*}
$$

Applying the results given by the two previous equations yields

$$
\begin{equation*}
Z_{a b}=R_{1}+\left(\frac{N_{1}}{N_{2}}\right)^{2} R_{2}+\left(\frac{N_{1}}{N_{2}}\right)^{2}\left(R_{L}+j X_{L}\right) \tag{34-10}
\end{equation*}
$$

Exploring Limiting Values (Cont)

Comparing the two results we see that when $k \rightarrow 1, L_{1} \rightarrow \infty, L_{2} \rightarrow \infty$
$>$ The transformer reflects the resistance of the secondary and load impedance to the primary side by a scaling factor equal to $\left(\frac{N_{1}}{N_{2}}\right)^{2}$ (the turns ratio squared).
> Hence we may describe the ideal transformer by two characteristics:

$$
\begin{align*}
& \checkmark\left|\frac{v_{1}}{N_{1}}\right|=\left|\frac{v_{2}}{N_{2}}\right| \Rightarrow\left|\frac{v_{1}}{v_{2}}\right|=\frac{N_{1}}{N_{2}} \tag{34-11}\\
& \checkmark\left|i_{1} N_{1}\right|=\left|i_{2} N_{2}\right| \Rightarrow\left|\frac{i_{1}}{i_{2}}\right|=\frac{N_{2}}{N_{1}} \tag{34-12}
\end{align*}
$$

In the following section we show how to determine the voltage and current ratios.

Determining the Voltage and Current Ratios

$>$ For unity coupling, $M^{2}=L_{1} L_{2}$ or $M=\sqrt{L_{1} L_{2}}$ therefore (34-15) becomes: $V_{2}=\sqrt{\frac{L_{2}}{L_{1}}} V_{1}$ (34-16)
> For unity coupling, the flux linking coil 1 is the same as the flux linking coil 2 , so we need only one permeance to describe the self inductance of each coil, thus (34-16) becomes
o $\quad \mathbf{V}_{2}=\sqrt{\frac{N_{2}^{2} p}{N_{1}^{2} p}} \mathbf{V}_{1}=\frac{N_{2}}{N_{1}} \mathbf{V}_{1}$
or
o $\frac{V_{1}}{N_{1}}=\frac{V_{2}}{N_{2}} \quad(34-18)$
Ampere-turn Ratio: Short Circuit Coil
Summing the voltages around the shorted coil of Fig.34-3 (b) yields

$$
\begin{equation*}
0=-j \omega \mathrm{MI}_{1}+j \omega \mathrm{~L}_{2} \mathrm{I}_{2} \tag{34-19}
\end{equation*}
$$

From which for $\mathrm{k}=1$,

$$
\begin{equation*}
\frac{I_{1}}{I_{2}}=\frac{L_{2}}{M}=\frac{L_{2}}{\sqrt{L_{1} L_{2}}}=\sqrt{\frac{L_{2}}{L_{1}}}=\frac{N_{2}}{N_{1}} \tag{34-20}
\end{equation*}
$$

This is equivalent to $I_{1} N_{1}=I_{2} N_{2}$
In practice, coils wound on a ferromagnetic material behave very much like an ideal transformer. Fig. $34-4$ shows the graphic symbol for an ideal transformer

Fig. 34-4 Ideal Transformer Symbol

Determining the Polarity of the Voltage and Current Ratios

* In the this section we show how to establish reference polarities for currents and voltages and remove the magnitude signs from equations (34-11) and (34-12)
+ R
Rules for assigning proper algebraic sign for relating the voltage and current
o If the coil voltages v_{1} and v_{2} are both positive or negative at the dot-marked terminal, use a plus sign, otherwise, use a minus sign
o If the coil currents i_{1} and i_{2} are both directed into or out of the dot-marked terminal, use a minus sign, otherwise, use a plus sign
\& The following four circuits illustrate these rules:
Fig. $34-6$ shows three ways to represent the same turn ratio of an ideal transformer (8 in this case)

$\mathrm{I}_{1} \mathrm{~N}_{1}=\mathrm{I}_{2} \mathrm{~N}_{2}$

Fig. $34-5$ (b) i_{1} Entering, i_{2} leaving and v_{1} Positive, \mathbf{v}_{2} Negative at Dotted Terminals

Fig. $34-5$ (d) Both Currents Entering and v_{1} Positive, v_{2} Negative at Dotted Terminals

(a)

(c)

Fig.34-6 Three Ways to Show the Same Turn Ratio

EE 205 Dr. A. Zidouri

Example 34-1

The load impedance connected in Fig.34-7 consists of $Z_{L}=0.2375+j 0.05 \Omega$ and $Z_{S}=0.25+j 2 \Omega$. If $v_{g}=2500 \cos 400 t$ find the steady state expressions for $\left.a\right) i_{1}$, b) v_{1}, c) i_{2}, d) v_{2}

Fig.34-7 Circuit for Example 34-1
a)

$$
\mathbf{V}_{\mathrm{g}}=2500 \angle 0^{\circ}=(0.25+\mathrm{j} 2) \mathbf{I}_{1}+\mathbf{V}_{1}
$$

and

Because

$$
\begin{gathered}
\mathbf{V}_{1}=10 \mathbf{V}_{2}=10\left[(0.2375+j 0.05) \mathbf{I}_{2}\right] \\
\mathbf{I}_{2}=10 \mathbf{I}_{1}
\end{gathered}
$$

we have

$$
\begin{aligned}
\mathbf{V}_{1}=10 \mathbf{V}_{2} & =100(0.2375+j 0.05) \mathbf{I}_{1} \\
& =(23.75+j 5) \|_{1}
\end{aligned}
$$

Therefore

EE 205 Dr. A. Zidouri

$$
2500 \angle 0^{\circ}=(24+j 7) I_{1}
$$

or

$$
I_{1}=100 \angle-16.26^{\circ} A
$$

Thus the steady state expression for i 1 is $i_{1}=100 \cos \left(400 \mathrm{t}-16.26^{\circ}\right) \mathrm{A}$
b)

$$
\begin{aligned}
\mathbf{V}_{1} & =2500 \angle 0^{\circ}-\left(100 \angle-16.26^{\circ}\right)(0.25+\mathrm{j} 2) \\
& =2500-80-\mathrm{j} 185 \\
& =2420-\mathrm{j} 185=2427.06 \angle-4.37^{\circ}
\end{aligned}
$$

Hence

$$
v_{1}=2427.06 \cos \left(400 \mathrm{t}-4.37^{\circ}\right) V
$$

c)

$$
I_{2}=10 I_{1}=1000 \angle-16.26^{\circ} \mathrm{A}
$$

therefore

$$
i_{2}=1000 \cos \left(400 \mathrm{t}-16.26^{\circ}\right) \mathrm{A}
$$

d)

$$
V_{2}=0.1 V_{1}=242.71 \angle-4.37^{\circ} \mathrm{V}
$$

therefore

$$
v_{2}=242.71 \cos \left(400 t-4.37^{\circ}\right) V
$$

EE 205 Dr. A. Zidouri

$$
I_{1}=100 \angle-16.26^{\circ} A
$$

Thus the steady state expression for i 1 is $i_{1}=100 \cos \left(400 \mathrm{t}-16.26^{\circ}\right) \mathrm{A}$
b)

$$
\begin{aligned}
V_{1} & =2500 \angle 0^{\circ}-\left(100 \angle-16.26^{\circ}\right)(0.25+j 2) \\
& =2500-80-j 185 \\
& =2420-j 185=2427.06 \angle-4.37^{\circ}
\end{aligned}
$$

Hence

$$
v_{1}=2427.06 \cos \left(400 t-4.37^{\circ}\right) V
$$

c)

$$
I_{2}=10 I_{1}=1000 \angle-16.26^{\circ} \mathrm{A}
$$

therefore

$$
i_{2}=1000 \cos \left(400 t-16.26^{\circ}\right) A
$$

d)

$$
V_{2}=0.1 V_{1}=242.71 \angle-4.37^{\circ} V
$$

therefore

$$
v_{2}=242.71 \cos \left(400 t-4.37^{\circ}\right) V
$$

The Use of Ideal Transformer for Impedance Matching

Fig.34-8 Coupling a Load to a Source by an Ideal Transformer

$$
\mathrm{V}_{1}=\frac{\mathrm{V}_{2}}{\mathrm{a}} \quad \text { and } \quad \mathrm{I}_{1}=\mathrm{al}_{2}
$$

Therefore

$$
\mathrm{Z}_{\text {in }}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}=\frac{\mathrm{V}_{2} / \mathrm{a}}{\mathrm{al}_{2}}=\frac{1}{\mathrm{a}^{2}} \frac{\mathrm{~V}_{2}}{\mathrm{I}_{2}}
$$

and $\mathrm{z}_{\mathrm{L}}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}} \Rightarrow \mathrm{Z}_{\mathrm{in}}=\frac{\mathrm{z}_{\mathrm{L}}}{\mathrm{a}^{2}}$
Thus the ideal transformer's secondary coil reflects the load impedance back to the primary coil, with the scaling factor $\frac{1}{\mathrm{a}^{2}}$
$Z_{\text {in }}$ is greater or less than Z_{L} depends on the turns ratio a.

Self Test:

1) The source voltage in the phasor domain circuit in the Fig. $34-9$ below is $25 \angle 0^{\circ} \mathrm{kV}$. Find the amplitude and phase angle of V_{2} and I_{2}.
```
V}=1868.15\angle142.39'V
I}=125/216.87\mp@subsup{7}{}{\circ}\textrm{A
```


Fig.34-9 Circuit for Self Test
2) The output impedance of the amplifier is 192Ω and the internal impedance of the speaker is 12Ω. Determine the required turn ratio n to achieve impedance matching for maximum power transfer.

Fig.35-10 Matching Speaker to Amplifier
Answer: $\mathrm{n}=0.25$

