Electric Circuits II
The Transformer
Lecture \#33

EE 205 Dr. A. Zidouri

The material to be covered in this lecture is as follows:
o Introduction to Transformers
o Analysis of a Linear Transformer Circuit
o Reflected Impedance

After finishing this lecture you should be able to:
$>$ Construct the frequency domain equivalent circuit of a transformer
$>$ Analyze a linear transformer circuit
$>$ Calculate the reflected impedance into the primary
$>$ Calculate the scaling factor for the reflected impedance

Introduction

$>$ A Transformer is a magnetic device that takes advantage of the phenomenon of mutual inductance.
> A Transformer is generally a four-terminal device comprising two (or more) magnetically coupled coils.
> A Transformer may also be regarded as one whose flux is proportional to the currents in its windings.

Consider the following general circuit model for a transformer used to connect a load to a source.

Fig.33-1 Frequency-domain circuit model for a Transformer

Introduction (cont)
 Terminology

$>$ The transformer winding connected to the source is the primary winding.
$>$ The transformer winding connected to the load is the secondary winding.
Where:
$\$ R_{1} \rightarrow$ The resistance of the primary winding
$\$ R_{2} \rightarrow$ The resistance of the secondary winding
$\pm L_{1} \rightarrow$ The self inductance of the primary winding
$\$ \mathrm{~L}_{2} \rightarrow$ The self inductance of the secondary winding
$4 \mathrm{M} \rightarrow$ The mutual inductance
$\pm V_{S} \rightarrow$ The internal Voltage of the sinusoidal source
$\pm Z_{S} \rightarrow$ The internal impedance of the sinusoidal source
$\pm Z_{\mathrm{L}} \rightarrow$ The Load impedance.

EE 205 Dr. A. Zidouri

Analysis of a linear transformer circuit

The analysis of the circuit consists of finding I_{1} and I_{2} as a function of circuit parameters:
$R_{1}, R_{2}, L_{1}, L_{2}, M, V_{S}, Z_{S}, Z_{L}$ and ω.

$$
\begin{array}{ll}
\text { Mesh 1 } & V_{S}=\left(Z_{S}+R_{1}+j \omega L_{1}\right) I_{1}-j \omega M I_{2} \\
\text { Mesh 2 } & 0=-j \omega M I_{1}+\left(Z_{L}+R_{2}+j \omega L_{2}\right) I_{2} \tag{33-2}
\end{array}
$$

For simplification, let

$$
\begin{array}{ll}
Z_{11}=R_{1}+j \omega L_{1}+Z_{S} & \text { Self impedance of the primary } \tag{33-3}\\
Z_{22}=R_{2}+j \omega L_{2}+Z_{L} & \text { Self impedance of the secondary }
\end{array}
$$

Thus,

$$
\begin{align*}
\mathbf{V}_{\mathrm{S}} & =\mathbf{Z}_{11} \mathrm{I}_{1}-\mathrm{j} \omega \mathrm{MI}_{2} \tag{33-5}\\
0 & =-j \omega \mathrm{MI}_{1}+\mathbf{Z}_{22} \mathrm{I}_{2} \tag{33-6}
\end{align*}
$$

From (33-6) yields: $\quad I_{2}=\frac{j \omega M}{Z_{22}} I_{1}$
Substitute in (33-5) yields

EE 205 Dr. A. Zidouri

$$
\begin{equation*}
\mathbf{V}_{\mathrm{s}}=\frac{\mathbf{Z}_{11} \mathbf{Z}_{22}+\omega^{2} \mathrm{M}^{2}}{\mathbf{Z}_{22}} \mathbf{I}_{1}=\left(\mathbf{Z}_{11}+\frac{\omega^{2} \mathrm{M}^{2}}{\mathbf{Z}_{22}}\right) \mathbf{I}_{1} \tag{33-8}
\end{equation*}
$$

Therefore

$$
\begin{array}{ll}
I_{1}=\frac{Z_{22}}{Z_{11} Z_{22}+\omega^{2} M^{2}} V_{S} & \text { Primary Current } \\
I_{2}=\frac{j \omega M}{Z_{11} Z_{22}+\omega^{2} M^{2}} V_{S}=\frac{j \omega M}{Z_{22}} \|_{1} & \text { Secondary Current } \tag{33-10}
\end{array}
$$

The impedance at the terminals of the source is:

$$
\begin{equation*}
Z_{\text {int }}-Z_{S} \quad \text { so, } \tag{33-11}
\end{equation*}
$$

$Z_{a b}=Z_{11}+\frac{\omega^{2} M^{2}}{Z_{22}}-Z_{S}=R_{1}+j \omega L_{1}+\frac{\omega^{2} M^{2}}{R_{2}+j \omega L_{2}+Z_{L}} \quad$ Impedance looking into the primary
Note: The impedance $Z_{a b}$ is independent of the magnetic polarity of the transformer.

Reflected Impedance

The quantity $Z_{r}=\frac{\omega^{2} M^{2}}{R_{2}+j \omega L_{2}+Z_{L}}$ is called the Reflected Impedance
This is due solely to the existence of mutual inductance.
To consider reflected impedance in more detail, we express the load impedance in rectangular form:

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathbf{X}_{\mathrm{L}} \tag{33-13}
\end{equation*}
$$

where X_{L} is positive for inductive load and negative for capacitive load.
Z_{r} in rectangular form will be:

$$
\begin{gather*}
Z_{r}=\frac{\omega^{2} M^{2}\left[\left(R_{L}+R_{2}\right)-j\left(\omega L_{2}+X_{L}\right)\right]}{\left(R_{L}+R_{2}\right)^{2}+\left(\omega L_{2}+X_{L}\right)^{2}} \tag{33-14}\\
Z_{r}=\frac{\omega^{2} M^{2}}{\left|Z_{22}\right|^{2}}\left[\left(R_{L}+R_{2}\right)-j\left(\omega L_{2}+X_{L}\right)\right]=\frac{\omega^{2} M^{2}}{\left|Z_{22}\right|^{2}} Z_{22}^{*} \tag{33-15}
\end{gather*}
$$

Therefore the Linear Transformer reflects the conjugate of the self-impedance of the secondary circuit $\left(Z_{22}\right)^{*}$ into the primary circuit.

The coefficient $\frac{\omega^{2} M^{2}}{\left|Z_{22}\right|^{2}}$ is called the scaling factor of the reflected impedance.

EE 205 Dr. A. Zidouri

Example 33-1

Calculate the reflected impedance, the scaling factor, the primary and secondary currents for the Circuit of Fig.33-2:

Parameters of the transformer

$$
\begin{aligned}
& R_{2}=40 \Omega, \quad X_{1}=400 \Omega, \\
& R_{L}=360 \Omega, \quad X_{L}=200 \Omega, \\
& R_{1}=100 \Omega, X_{2}=100 \Omega, \quad \omega M=80 \Omega, \\
& Z_{S}=184+j 0 \Omega, V_{S}=\frac{245}{\sqrt{2}} \angle 0^{\circ} V \\
& M=k \sqrt{L_{1} L_{2}} \\
& M=0.4 \sqrt{(0.125)(0.5)}=0.1 \Rightarrow \omega=800 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Fig.33-2 Circuit for Example 33-1

The reflected impedance:
Substituting equation (33-4) in equation (33-15) we get
$Z_{22}=R_{2}+j \omega L_{2}+Z_{L}=\left(R_{L}+R_{2}\right)+j\left(X_{2}+X_{L}\right)=400+j 300$
$\left|Z_{22}\right|=|400+j 300|=500 \Omega$ and $Z_{r}=\frac{\omega^{2} M^{2}}{\left|Z_{22}\right|^{2}}\left[\left(R_{L}+R_{2}\right)-j\left(\omega L_{2}+X_{L}\right)\right]$

EE 205 Dr. A. Zidouri

Example 33-1(cont)

therefore
$Z_{r}=\frac{80^{2}}{500^{2}}[400-j 300]=1.6^{2} \times 4-j 1.6^{2} \times 3=10.24-j 7.68 \Omega$
The scaling factor by which $Z_{22}{ }^{*}$ is reflected is $\frac{80^{2}}{500^{2}}=\frac{64}{2500}=0.0256$
The primary current l_{1} is given by equation $33-9$ as:
$\mathrm{I}_{1}=\frac{\mathrm{Z}_{22}}{\mathrm{Z}_{11} \mathrm{Z}_{22}+\omega^{2} \mathrm{M}^{2}} \mathrm{~V}_{\mathrm{S}}$
where $Z_{11}=R_{1}+j \omega L_{1}+Z_{S}=184+100+j 400=284+j 400 \Omega$ and $Z_{22}=400+j 300$
Therefore $\mathrm{I}_{1}=\frac{400+\mathrm{j} 300}{(284+\mathrm{j} 400)(400+\mathrm{j} 300)+80^{2}} \frac{245}{\sqrt{2}} \angle 0^{\circ}$
$=\frac{500 \angle 36.87^{\circ}}{245280 \angle 91.53^{\circ}+6400} \frac{245}{\sqrt{2}} \angle 0^{\circ}$
$=\frac{0.5}{\sqrt{2}} \angle-53.13^{\circ} \mathrm{A}$
In the time domain, $i_{1}=0.5 \cos \left(800 t-53.13^{\circ}\right) \mathrm{A}$

EE 205 Dr. A. Zidouri

Example 33-1(cont)

The secondary current I_{2} is given by equation $33-10$ as:
$\mathrm{I}_{2}=\frac{\mathrm{j} \omega \mathrm{M}}{\mathrm{Z}_{22}} \mathrm{I}_{1}$
where $Z_{22}=400+j 300$ and $\omega M=80$
Therefore $\mathrm{I}_{2}=\frac{80 \angle 90^{\circ}}{500 \angle 36.87^{\circ}} \frac{0.5}{\sqrt{2}} \angle-53.13^{\circ}$

$$
I_{2}=\frac{80}{500 \sqrt{2}}=\frac{0.08}{\sqrt{2}} \mathrm{~A}
$$

In the time domain, $\mathrm{i}_{2}=0.08 \cos 800 \mathrm{t} A$

Self Test:

For the following circuit of Fig.33-3

* What is the self-impedance of the primary?
a) $500+j 100$
b) $700+\mathrm{j} 3700$
c) $200+\mathrm{j} 3600$
d) $1000+\mathrm{j} 4400$

Correct answer b

* What is the self-impedance of the secondary?
a) $900-\mathrm{j} 3700$
b) $800-\mathrm{j} 2500$
c) $900-\mathrm{j} 900$
d) $100+\mathrm{j} 1600$

Correct answer c

* What is the impedance reflected into the primary?
a) $800-\mathrm{j} 2500$

Fig.33-3 for SelfTest
*What is the impedance seen looking into the primary terminals?
a) $700+\mathrm{j} 4800$
b) $200+j 3600$
c) $1000+\mathrm{j} 4400$
c) $1000+\mathrm{j} 4400$
d) $800+j 800$

