Electric Circuits II

More about Mutual Inductance

Lecture #32

The material to be covered in this lecture is as follows:

- o Mutual Inductance in Terms of Self Inductance
- Mesh Current Analysis of magnetically coupled Circuits
- Procedure for Determining Dot Markings
- o Energy Calculation

After finishing this lecture you should be able to:

- > Analyze Circuits with Mutual Inductance
- Determine the Coefficient of Coupling
- Determine the Dot Markings of neighboring Coils
- > Perform Energy Calculations in Magnetically Coupled Circuits

Mutual Inductance in Terms of Self Inductance We have seen that

 $\begin{array}{ll} L_1 = N_1^2 p_1 \\ L_2 = N_2^2 p_2 \end{array}$ Therefore $L_1 L_2 = N_1^2 N_2^2 p_1 p_2 = N_1^2 N_2^2 (p_{11} p_{21}) (p_{22} p_{12})$ But for linear system,

$$p_{21} = p_{12} \Rightarrow$$

$$L_{1}L_{2} = N_{1}^{2}N_{2}^{2}p_{1}^{2}\left(1 + \frac{p_{11}}{p_{12}}\right)\left(1 + \frac{p_{22}}{p_{12}}\right)$$

$$= M^{2}\left(1 + \frac{p_{11}}{p_{12}}\right)\left(1 + \frac{p_{22}}{p_{12}}\right)$$
Replacing the positive quantity $\left(1 + \frac{p_{11}}{p_{12}}\right)\left(1 + \frac{p_{22}}{p_{12}}\right)$ by $\frac{1}{k^{2}}$ gives a more meaningful expression
$$M^{2} = k^{2}L_{1}L_{2} \quad \text{or} \quad M = k\sqrt{L_{1}L_{2}}$$

- 4 -

Mutual Inductance in Terms of Self Inductance (Cont.)

k is called the Coefficient of Coupling and must lie between 0 and 1:

$$0 \le k \le 1$$

When $\Phi_{12} = \Phi_{12} = 0 \Longrightarrow p_{12} = 0$
$$\Rightarrow \frac{1}{k^2} = \infty, \text{ or } k = 0$$

If no flux linkage between the coils, obviously M = 0 and k = 1, when $\Phi_{11} = \Phi_{22} = 0$, which presents the Ideal State.

Mesh Current Analysis

• To solve the following example 32-1, Let us reproduce the Mesh Current Equations that describe the following Circuit seen in Lec31:

Fig.31-5 (c) The Self and Mutually Induced Voltages appearing across the coils shown in Fig.31-5 (a)

$$-v_{g} + R_{1}i_{1} + L_{1}\frac{di_{1}}{dt} - M\frac{di_{2}}{dt} = 0 \quad (\text{Mesh 1})$$

$$R_{2}i_{2} + L_{2}\frac{di_{2}}{dt} - M\frac{di_{1}}{dt} = 0 \quad (\text{Mesh 2})$$

Example 32-1

> Write a Set of Mesh-Current Equations that describe the Circuit in the following Figure:

> What is the Coefficient of Coupling of the Magnetically Coupled Coils?

$$-v_g + 8(i_1 - i_2) + 9\frac{d(i_1 + i_3)}{dt} - 4.5\frac{di_2}{dt} = 0$$
 (Mesh 1)

$$6(i_2 + i_3) + 8(i_2 - i_1) + 4\frac{di_2}{dt} - 4.5\frac{d(i_2 + i_3)}{dt} = 0$$
 (Mesh 2)

$$20i_{3} + 6(i_{2} + i_{3}) + 4\frac{di_{2}}{dt} + 9\frac{d(i_{1} + i_{3})}{dt} - 4.5\frac{di_{2}}{dt} = 0$$
 (Mesh 3)

Fig.32-1 Circuit for Example 32-1

$$k = \frac{M}{\sqrt{L_1 L_2}} = \frac{4.5}{\sqrt{4 \times 9}} = \frac{4.5}{6} = 0.75$$

Procedure for Determining Dot Markings

The following six steps applied to the following figure determine a set of Dot Markings.

- Arbitrarily Select one Terminal, (Say Terminal D) of one coil and mark it with a Dot
- 2) Assign a current into the dotted terminal and label it \mathbf{i}_{D}
- 3) Use the Right–Hand rule to determine the direction of the magnetic field established by i_D inside the coupled coils and label this as Φ_D
- Arbitrarily pick one terminal of the second coil (Say Terminal A) and Assign a current into it (Show this as i_A)
- 5) Use the Right–Hand rule to determine the direction of the magnetic field established by i_D inside the coupled coils and label this as Φ_A
- 6) Compare the directions of the two fluxes Φ_D and Φ_A . If the fluxes have the same reference direction, place a Dot on the terminal of the second coil where the test current (i_A) enters.

In this example the fluxes Φ_D and Φ_A have the same reference direction, therefore a Dot goes on terminal A.

Example 32-2

The polarity markings on two coils are to be determined experimentally. The experimental setup is shown in Fig.32-3. When the switch is opened, the dc Voltmeter kicks upscale. According to the polarity and dot marking shown, where should we place the other dot?

Answer:

- The lower terminal of the unmarked coil has the same instantaneous polarity as the dotted terminal.
- ✓ Therefore, place a dot on the lower terminal of the unmarked coil.

Fig.32-3 (a) Circuit For Example 32-2

Fig.32-3 (b) Circuit For Example 32-2

Energy Calculations

For linear magnetic coupling

(1) $M_{12} = M_{21}$ (2) $M = k_{\sqrt{L_1 L_2}}$

Consider the following Circuit

Fig.32-4 Circuit used for Energy Calculations

Case 1: Increase i_1 from 0 to I_1 , hold $i_1 = I_1$ and $i_2 = 0$ $\int_0^{w_1} dw = L_1 \int_0^{l_1} di_1$ $W_1 = \frac{1}{2} L_1 l_1^2$

Case 2:

Now we hold $i_1 = I_1$ and Increase i_2 from 0 to I_2

$$p = I_1 M_{12} \frac{di_2}{dt} + i_2 V_2$$

Energy Calculations (cont)

The total energy stored in the pair of coils when $i_2 = I_2$

$$\int_{w_1}^{w} dw = \int_{0}^{l_2} l_1 M_{12} di_2 + \int_{0}^{l_2} L_2 i_2 di_2$$
$$W = W_1 + \frac{1}{2} L_2 l_2^2 + M_{12} l_1 l_2$$
$$W = \frac{1}{2} L_1 l_1^2 + \frac{1}{2} L_2 l_2^2 + \frac{1}{2} M_{12} l_1 l_2$$

If we reverse the procedure – That is, if we first increase i_2 from zero to I_2 and increase i_1 from zero to I_1 - The total energy stored is:

$$W = \frac{1}{2}L_1I_1^2 + \frac{1}{2}L_2I_2^2 + M_{21}I_1I_2$$

At any instant of time, the total energy stored in the coupled coils is:

 $w(t) = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 + Mi_1i_2$ Assuming that both coil currents entered polarity marked terminals

In general:

$$w(t) = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 \pm Mi_1i_2$$

- 11 -

Example 32-3

Consider the circuit in Fig.32-5. Determine the coupling coefficient. Calculate the energy stored in the coupled inductors at time t = 1s if $v = 60 \cos(4t + 30^\circ)V$.

Fig.32-5 Circuit For Example 32-3

Solution:

The coupling coefficient is

$$\kappa = \frac{101}{\sqrt{L_1 L_2}} = \frac{2.5}{\sqrt{20}} = 0.56$$

- Means that the inductors are tightly coupled.
- To find the energy stored, we need to obtain the frequency domain equivalent of the circuit

$$60 \cos(4t + 30^{\circ})V \Rightarrow 60 \angle 30^{\circ}, \omega = 4 \frac{rad}{s}$$

$$5H \Rightarrow j \omega L_1 = j 20\Omega$$

$$2.5H \Rightarrow j \omega M = j 10\Omega$$

$$4H \Rightarrow j \omega L_2 = j 16\Omega$$

$$\frac{1}{16}F \Rightarrow \frac{1}{j \omega C} = -j 4\Omega$$
The frequency domain equivalent is shown in Fig.32-6 below:

Solution (Cont):

We now apply mesh analysis

$$(10 + j20)I_1 + j10I_2 = 60 \angle 30^\circ$$

$$j10I_1 + (j16 - j4)I_2 = 0$$

Or

$$I_1 = -1.2I_2$$

This yields

$$I_2(-12 - j14) = 60 \angle 30^\circ \Rightarrow I_2 = 3.254 \angle 160.6^\circ A$$

 $I_1 = -1.2I_2 = 3.905 \angle -19.4^\circ A$

In the time domain

$$i_1 = 3.905 \cos(4t - 19.4^\circ),$$

 $i_2 = 3.254 \cos(4t + 160.6^\circ)$

At time t=1s, 4t= 4rad=229.2°,

$$i_1 = 3.905 \cos(229.2^\circ - 19.4^\circ) = -3.389A$$
,
 $i_2 = 3.254 \cos(229.2^\circ + 160.6^\circ) = 2.824A$

Solution (Cont):

The total energy stored in the coupled inductors is

$$w = \frac{1}{2}L_{1}i_{1}^{2} + \frac{1}{2}L_{2}i_{2}^{2} + Mi_{1}i_{2}$$

$$w = \frac{1}{2}L_{1}i_{1}^{2} + \frac{1}{2}L_{2}i_{2}^{2} + Mi_{1}i_{2}$$

$$= \frac{1}{2}(5)(-3.389)^{2} + \frac{1}{2}(4)(2.824)^{2} + 2.5(-3.389)(2.824) = 20.73J$$

Fig.32-6 Frequency domain Equivalent Circuit For Example 32-3

Self Test:

*	 When k equals zero, two inductors in series combine by 					
	a) addition	b) subtraction	c) product-	over-sum	d) multiplication	
						answer: a
*	Two parallel inductors with no mutual inductance combine by					
	a) addition	b) subtraction	c) product-	over-sum	d) multiplication	
						answer: c
*	If N=200 and a rate of change of flux is 0.4 Wb/s. The voltage induced in the inductor is?					
	a) 50	b) 80	c) 200	d) 500		
			-			answer: b
*	✤ Tow inductors are wound on a ferromagnetic core. The first Inductor has N ₁ =200 and					
	change of flux is 0.4 Wb/s. If the second inductor has $N_2=125$ turns and the coefficient of					
	coupling is unity, how much voltage is induced in the second inductor?					
	a) 50	b) 80	c) 200	d) 500		
						answer: a
*	The self-inductances of the coils in Fig.32-4 are L ₁ = 18 mH and L ₂ = 32 mH. If the coeffic					
	coupling is 0.85, calculate the energy stored in the system in millioules when					

coupling is 0.85, calculate the energy stored in the system in millijoules when a) $i_1 = 6 A$, $i_2 = 9 A$; b) $i_1 = -6 A$, $i_2 = -9 A$; c) $i_1 = -6 A$, $i_2 = 9 A$; d) $i_1 = 6 A$, $i_2 = -9 A$. What conclusion do you draw?

answer:

a) 2721.60 mJ; b) 2721.60 mJ; c) 518.40 mJ; d) 518.40 mJ. Same answer when both current are entering or both leaving, and same answer when one is leaving and one is entering.