Electric Circuits II
More about Mutual Inductance
Lecture \#32

EE 205 Dr. A. Zidouri

The material to be covered in this lecture is as follows:
o Mutual Inductance in Terms of Self Inductance
o Mesh Current Analysis of magnetically coupled Circuits
o Procedure for Determining Dot Markings
o Energy Calculation

EE 205 Dr. A. Zidouri

After finishing this lecture you should be able to:
> Analyze Circuits with Mutual Inductance
$>$ Determine the Coefficient of Coupling
$>$ Determine the Dot Markings of neighboring Coils
$>$ Perform Energy Calculations in Magnetically Coupled Circuits

EE 205 Dr. A. Zidouri

Mutual Inductance in Terms of Self Inductance
We have seen that

$$
\begin{aligned}
& L_{1}=N_{1}^{2} p_{1} \\
& L_{2}=N_{2}^{2} p_{2}
\end{aligned}
$$

Therefore

$$
L_{1} L_{2}=N_{1}^{2} N_{2}^{2} p_{1} p_{2}=N_{1}^{2} N_{2}^{2}\left(p_{11} p_{21}\right)\left(p_{22} p_{12}\right)
$$

But for linear system,

$$
\begin{gathered}
p_{21}=p_{12} \Rightarrow \\
L_{1} L_{2}=N_{1}^{2} N_{2}^{2} p_{1}^{2}\left(1+\frac{p_{11}}{p_{12}}\right)\left(1+\frac{p_{22}}{p_{12}}\right) \\
=M^{2}\left(1+\frac{p_{11}}{p_{12}}\right)\left(1+\frac{p_{22}}{p_{12}}\right)
\end{gathered}
$$

Replacing the positive quantity $\left(1+\frac{p_{11}}{p_{12}}\right)\left(1+\frac{p_{22}}{p_{12}}\right)$ by $\frac{1}{k^{2}}$ gives a more meaningful expression $M^{2}=k^{2} L_{1} L_{2} \quad$ or $\quad M=k \sqrt{L_{1} L_{2}}$

EE 205 Dr. A. Zidouri

Mutual Inductance in Terms of Self Inductance (Cont.)

k is called the Coefficient of Coupling and must lie between 0 and 1 :

$$
\begin{aligned}
& 0 \leq \mathrm{k} \leq 1 \\
& \text { When } \Phi_{12}=\Phi_{12}=0 \Rightarrow \mathrm{p}_{12}=0 \\
& \qquad \Rightarrow \frac{1}{\mathrm{k}^{2}}=\infty, \text { or } \mathrm{k}=0
\end{aligned}
$$

If no flux linkage between the coils, obviously $\mathrm{M}=0$ and $\mathrm{k}=1$, when $\Phi_{11}=\Phi_{22}=0$, which presents the Ideal State.

EE 205 Dr. A. Zidouri

Mesh Current Analysis

- To solve the following example 32-1, Let us reproduce the Mesh Current Equations that describe the following Circuit seen in Lec31:

$$
\begin{gather*}
-v_{g}+R_{1} i_{1}+L_{1} \frac{d i_{1}}{d t}-M \frac{d i_{2}}{d t}=0 \quad \text { (Mesh 1) } \\
R_{2} i_{2}+L_{2} \frac{d i_{2}}{d t}-M \frac{d i_{1}}{d t}=0 \tag{Mesh2}
\end{gather*} \quad \text { (Mesh 2) }
$$

Fig.31-5 (c) The Self and Mutually Induced Voltages appearing across the coils shown in Fig.31-5 (a)

Example 32-1

> Write a Set of Mesh-Current Equations that describe the Circuit in the following Figure:
> What is the Coefficient of Coupling of the Magnetically Coupled Coils?

Fig.32-1 Circuit for Example 32-1

$$
\begin{align*}
& -v_{g}+8\left(i_{1}-i_{2}\right)+9 \frac{d\left(i_{1}+i_{3}\right)}{d t}-4.5 \frac{d i_{2}}{d t}=0 \tag{Mesh1}\\
& 6\left(i_{2}+i_{3}\right)+8\left(i_{2}-i_{1}\right)+4 \frac{d i_{2}}{d t}-4.5 \frac{d\left(i_{2}+i_{3}\right)}{d t}=0 \tag{Mesh2}\\
& 20 i_{3}+6\left(i_{2}+i_{3}\right)+4 \frac{d i_{2}}{d t}+9 \frac{d\left(i_{1}+i_{3}\right)}{d t}-4.5 \frac{d i_{2}}{d t}=0
\end{align*}
$$

(Mesh 3)

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{4.5}{\sqrt{4 \times 9}}=\frac{4.5}{6}=0.75
$$

Procedure for Determining Dot Markings

The following six steps applied to the following figure determine a set of Dot Markings.

1) Arbitrarily Select one Terminal, (Say Terminal D) of one coil and mark it with a Dot
2) Assign a current into the dotted terminal and label it i_{D}
3) Use the Right-Hand rule to determine the direction of the magnetic field established by i_{D} inside the coupled coils and label this as Φ_{D}
4) Arbitrarily pick one terminal of the second coil (Say Terminal A) and Assign a current into it (Show this as i_{A})
5) Use the Right-Hand rule to determine the direction of the magnetic field established by i_{D} inside the coupled coils and label this as Φ_{A}
6) Compare the directions of the two fluxes Φ_{D} and Φ_{A}. If the fluxes have the same reference direction, place a Dot on the terminal of the second coil where the test current $\left(\mathrm{i}_{\mathrm{A}}\right)$ enters.

In this example the fluxes Φ_{D} and Φ_{A} have the same reference direction, therefore a Dot goes on terminal A.

Fig.32-2 Set of Coils Showing Steps for Determining a Set of Dot Markings

Example 32-2

> The polarity markings on two coils are to be determined experimentally. The experimental setup is shown in Fig.32-3. When the switch is opened, the dc Voltmeter kicks upscale. According to the polarity and dot marking shown, where should we place the other dot?

Answer:

\checkmark The lower terminal of the unmarked coil has the same instantaneous polarity as the dotted terminal.
\checkmark Therefore, place a dot on the lower terminal of the unmarked coil.

Fig.32-3 (a) Circuit For Example 32-2

Fig.32-3 (b) Circuit For Example 32-2

EE 205 Dr. A. Zidouri

Energy Calculations

For linear magnetic coupling
(1) $\mathrm{M}_{12}=\mathrm{M}_{21}$
(2) $M=k \sqrt{L_{1} L_{2}}$

Consider the following Circuit

Fig.32-4 Circuit used for Energy Calculations

Case 1:
Increase i_{1} from 0 to l_{1}, hold $i_{1}=l_{1}$ and $i_{2}=0$
$\int_{0}^{w_{1}} d w=L_{1} \int_{0}^{l_{1}} d i_{1}$
$W_{1}=\frac{1}{2} L_{1} I_{1}^{2}$

Case 2:
Now we hold $i_{1}=I_{1}$ and Increase i_{2} from 0 to I_{2}

$$
p=I_{1} M_{12} \frac{d i_{2}}{d t}+i_{2} v_{2}
$$

EE 205 Dr. A. Zidouri

Energy Calculations (cont)

The total energy stored in the pair of coils when $\mathrm{i}_{2}=\mathrm{I}_{2}$
$\int_{w_{1}}^{w} d w=\int_{0}^{I_{2}} I_{1} M_{12} d i_{2}+\int_{0}^{I_{2}} L_{2} i_{2} d i_{2}$
$W=W_{1}+\frac{1}{2} L_{2} I_{2}^{2}+M_{12} I_{1} I_{2}$
$W=\frac{1}{2} L_{1} I_{1}^{2}+\frac{1}{2} L_{2} I_{2}^{2}+M_{12} I_{1} I_{2}$
If we reverse the procedure - That is, if we first increase i_{2} from zero to I_{2} and increase i_{1} from zero to I_{1} - The total energy stored is:
$W=\frac{1}{2} L_{1} I_{1}^{2}+\frac{1}{2} L_{2} I_{2}^{2}+M_{21} I_{1} I_{2}$
At any instant of time, the total energy stored in the coupled coils is:
$w(t)=\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+M i_{1} i_{2} \quad$ Assuming that both coil currents entered polarity marked terminals In general:
$w(t)=\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2} \pm M i_{1} i_{2}$

Example 32-3

Consider the circuit in Fig.32-5. Determine the coupling coefficient. Calculate the energy stored in the coupled inductors at time $t=1 \mathrm{~s}$ if $\mathrm{V}=60 \cos \left(4 \mathrm{t}+30^{\circ}\right) \mathrm{V}$.

Fig.32-5 Circuit For Example 32-3

Solution:

The coupling coefficient is
$k=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{2.5}{\sqrt{20}}=0.56$
> Means that the inductors are tightly coupled.
> To find the energy stored, we need to obtain the frequency domain equivalent of the circuit

$$
\begin{aligned}
& 60 \cos \left(4 \mathrm{t}+30^{\circ}\right) V \Rightarrow 60 \angle 30^{\circ}, \omega=4 \mathrm{rad} / \mathrm{s} \\
& 5 H \Rightarrow j \omega L_{1}=j 20 \Omega \\
& 2.5 H \Rightarrow j \omega M=j 10 \Omega \\
& 4 H \Rightarrow j \omega L_{2}=j 16 \Omega \\
& \frac{1}{16} F \Rightarrow \frac{1}{j \omega C}=-j 4 \Omega \\
& \text { The frequency domain equivalent is } \\
& \text { shown in Fig.32-6 below: }
\end{aligned}
$$

EE 205 Dr. A. Zidouri

Solution (Cont):

We now apply mesh analysis

$$
\begin{gathered}
(10+j 20) I_{1}+j 10 I_{2}=60 \angle 30^{\circ} \\
j 10 I_{1}+(j 16-j 4) I_{2}=0 \\
\text { Or } \\
I_{1}=-1.2 I_{2}
\end{gathered}
$$

This yields

$$
\begin{gathered}
I_{2}(-12-j 14)=60 \angle 30^{\circ} \Rightarrow I_{2}=3.254 \angle 160.6^{\circ} \mathrm{A} \\
I_{1}=-1.2 I_{2}=3.905 \angle-19.4^{\circ} \mathrm{A}
\end{gathered}
$$

In the time domain
$i_{1}=3.905 \cos \left(4 t-19.4^{\circ}\right)$,
$i_{2}=3.254 \cos \left(4 t+160.6^{\circ}\right)$
At time $\mathrm{t}=1 \mathrm{~s}, 4 \mathrm{t}=4 \mathrm{rad}=229.2^{\circ}$,
$i_{1}=3.905 \cos \left(229.2^{\circ}-19.4^{\circ}\right)=-3.389 \mathrm{~A}$,
$i_{2}=3.254 \cos \left(229.2^{\circ}+160.6^{\circ}\right)=2.824 A$

EE 205 Dr. A. Zidouri

Solution (Cont):

The total energy stored in the coupled inductors is

$$
\begin{gathered}
w=\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+M i_{1} i_{2} \\
w=\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+M i_{1} i_{2} \\
=\frac{1}{2}(5)(-3.389)^{2}+\frac{1}{2}(4)(2.824)^{2}+2.5(-3.389)(2.824)=20.73 \mathrm{~J}
\end{gathered}
$$

Fig.32-6 Frequency domain Equivalent Circuit For Example 32-3

Self Test:

* When k equals zero, two inductors in series combine by
a) addition
b) subtraction
c) product-over-sum
d) multiplication
answer: a
* Two parallel inductors with no mutual inductance combine by
a) addition
b) subtraction
c) product-over-sum
d) multiplication
answer: c
* If $\mathrm{N}=200$ and a rate of change of flux is $0.4 \mathrm{~Wb} / \mathrm{s}$. The voltage induced in the inductor is?
a) 50
b) 80
c) 200
d) 500
answer: b
* Tow inductors are wound on a ferromagnetic core. The first Inductor has $\mathrm{N}_{1}=200$ and a rate of change of flux is $0.4 \mathrm{~Wb} / \mathrm{s}$. If the second Inductor has $\mathrm{N}_{2}=125$ turns and the coefficient of coupling is unity, how much voltage is induced in the second inductor?
a) 50
b) 80
c) 200
d) 500
* The self-inductances of the coils in Fig. $32-4$ are $L_{1}=18 \mathrm{mH}$ and $\mathrm{L}_{2}=32 \mathrm{mH}$. If the coefficient of coupling is 0.85 , calculate the energy stored in the system in millijoules when
a) $i_{1}=6 \mathrm{~A}, i_{2}=9 \mathrm{~A}$;
b) $i_{1}=-6 A, i_{2}=-9 A$;
c) $i_{1}=-6 A, i_{2}=9 A$;
d) $i_{1}=6 A, i_{2}=-9 A$.

What conclusion do you draw?
answer:
a) 2721.60 mJ ;
b) 2721.60 mJ ;
c) 518.40 mJ ;
d) 518.40 mJ .

Same answer when both current are entering or both leaving, and same answer when one is leaving and one is entering.

