

King Fahd University of Petroleum & Minerals Department of Electrical Engineering EE-205 Electric Circuits II

Exam:	II
Date :	Dec. 24, 2005
Place:	Bldg. 14 Room 108
Time:	6:30 – 7:50 pm

Student Name	:	
Student ID	:	Sec. No.
Instructor	: Dr. Abdelmalek ZIDOURI	

Problem 1	Problem 2	Problem 3 or 4	Total/20

Problem I (7pnts):

Write the matrix state equation for the circuit below.

Problem III (7pnts):

For the circuit below, take: $R_1 = 8\Omega$, $R_2 = 4\Omega$, L = 2 H, $C = \frac{1}{16}F$

- a) Draw the equivalent circuit in the s-domain.
- **b)** Determine $H(s) = V_2/V_1$
- c) Draw the pole-zero plot of H(s).

Problem II (6pnts):

a) Find the resonance frequency for each of the circuits shown below.

c) Find the quality factor for the circuit in (a)

Problem IV (6pnts):

The linear transformer below couples a load Z_L composed of 300 Ω resistor in series with a 0.25H inductor to a sinusoidal voltage source $V_s=300 V_{rms}$ at a frequency ω of 800 rad/sec. The internal impedance of the source $Z_s = 180 + j0 \Omega$.

The transformer has the following parameters. ($R_1=105 \Omega$, $R_2=40 \Omega$, $L_1=0.5H$, $L_2=0.12H$ and k=0.5)

- a) Construct the frequency domain equivalent circuit
- b) Calculate the self impedance of the primary circuit
- c) Calculate the self impedance of the secondary circuit
- d) Calculate the reflected impedance Z_r .

