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Abstract

A niched Pareto genetic algorithm (NPGA) based approach to solve the multiobjective environmental/economic dispatch (EED) problem

is presented in this paper. The EED problem is formulated as a non-linear constrained multiobjective optimization problem. The proposed

NPGA based approach handles the problem as a multiobjective problem with competing and non-commensurable cost and emission

objectives. One of the main advantages of the proposed approach is that there is no restriction on the number of optimized objectives. The

proposed approach has a diversity-preserving mechanism to overcome the premature convergence problem. A hierarchical clustering

algorithm is developed and imposed to provide the decision maker with a representative and manageable Pareto-optimal set. In addition,

fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed approach are carried out on

the standard IEEE 30-bus test system. The results demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-

optimal non-dominated solutions of the multiobjective EED problem in one single run. The comparison with the classical methods

demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EED problem. q 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The basic objective of economic dispatch (ED) of

electric power generation is to schedule the committed

generating unit outputs so as to meet the load demand at

minimum operating cost while satisfying all unit and system

equality and inequality constraints. This makes the ED

problem a large-scale highly non-linear constrained optim-

ization problem. In addition, the increasing public aware-

ness of the environmental protection and the passage of the

Clean Air Act Amendments of 1990 have forced the utilities

to modify their design or operational strategies to reduce

pollution and atmospheric emissions of the thermal power

plants.

Several strategies to reduce the atmospheric emissions

have been proposed and discussed [1–3]. These include

installation of pollutant cleaning equipment, switching to

low emission fuels, replacement of the aged fuel-burners

with cleaner ones, and emission dispatching. The first three

options require installation of new equipment and/or

modification of the existing ones that involve considerable

capital outlay and, hence, they can be considered as long-

term options. The emission dispatching option is an

attractive short-term alternative in which the emission in

addition to the fuel cost objective are to be minimized. Thus,

the ED problem can be handled as a multiobjective

optimization problem with non-commensurable and contra-

dictory objectives. In recent years, this option has received

much attention [4 –11] since it requires only small

modification of the basic ED to include emissions.

Different techniques have been reported in the literature

pertaining to environmental/economic dispatch (EED)

problem. In Refs. [4,5] the problem has been reduced to a

single objective problem by treating the emission as a

constraint. This formulation, however, has a severe

difficulty in getting the trade-off relations between cost

and emission. Alternatively, minimizing the emission has

been handled as another objective in addition to the cost. A

linear programming based optimization procedures in which

the objectives are considered one at a time was presented in

Ref. [6]. However, many mathematical assumptions have to
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be given to simplify the problem. Furthermore, this

approach does not give any information regarding the

trade-offs involved.

In other research direction, the multiobjective EED

problem was converted to a single objective problem by

linear combination of different objectives as a weighted sum

[7–10]. The important aspect of this weighted sum method

is that a set of non-inferior (or Pareto-optimal) solutions can

be obtained by varying the weights. Unfortunately, this

requires multiple runs as many times as the number of

desired Pareto-optimal solutions. Furthermore, this method

cannot be used in problems having a non-convex Pareto-

optimal front. To avoid this difficulty, the 1-constraint

method was presented in Refs. [11–13]. This method

optimizes the most preferred objective and considers the

other objectives as constraints bounded by some allowable

levels 1. The most obvious weaknesses of this approach are

that it is time-consuming and tends to find weakly non-

dominated solutions.

The recent direction is to handle both objectives

simultaneously as competing objectives. A fuzzy multi-

objective optimization technique for EED problem was

proposed [14]. However, the solutions produced are sub-

optimal and the algorithm does not provide a systematic

framework for directing the search towards Pareto-optimal

front. An evolutionary algorithm based approach evaluating

the economic impacts of environmental dispatching and fuel

switching was presented in Ref. [15]. However, some non-

dominated solutions may be lost during the search process

while some dominated solutions may be misclassified as

non-dominated ones due to the selection process adopted. A

fuzzy satisfaction-maximizing decision approach was

successfully applied to solve the biobjective EED problem

[16]. However, extension of the approach to include more

objectives is a very involved question. A multiobjective

stochastic search technique (MOSST) for the multiobjective

EED problem was presented in Ref. [17]. However, the

technique is computationally involved and time-consuming.

In addition, there is no effort to avoid the search bias to some

regions in the problem space that may result in premature

convergence. This degrades the Pareto-optimal front and

more efforts should be done to preserve the diversity of the

non-dominated solutions.

Recently, the studies on evolutionary algorithms have

shown that these methods can be efficiently used to

eliminate most of the difficulties of classical methods

[18–21]. Since they use a population of solutions in their

search, multiple Pareto-optimal solutions can, in principle,

be found in one single run. A non-dominated sorting genetic

algorithm was presented for EED problem [22]. However,

the technique is computationally involved due to ranking of

all population members into different fronts.

In this paper, a niched Pareto genetic algorithm (NPGA)

based approach is proposed to solve the EED optimization

problem. The proposed approach has a diversity-preserving

mechanism to find widely different Pareto-optimal sol-

utions. A hierarchical clustering technique is implemented

to provide the power system operator with a representative

and manageable Pareto-optimal set. A fuzzy-based mech-

anism is employed to extract the best compromise solution.

The potential of the proposed approach to handle the

multiobjective EED problem is investigated. Several runs

are carried out on a standard test system and the results are

compared to the classical techniques. The effectiveness of

the proposed approach to solve the multiobjective EED

problem is demonstrated.

2. Problem formulation

The EED problem is to minimize two competing

objective functions, fuel cost and emission, while satisfying

several equality and inequality constraints. Generally the

problem is formulated as follows.

2.1. Problem objectives

Minimization of fuel cost. The generator cost curves are

represented by quadratic functions with sine components to

represent the valve loading effects. The total $/h fuel cost

F(PG) can be expressed as

FðPGÞ ¼
XN
i¼1

ai þ biPGi
þ ciP

2
Gi
þ di sin ei Pmin

Gi
2 PGi

� �h i��� ���
ð1Þ

where N is the number of generators, ai, bi, ci, di, and ei are

the cost coefficients of the ith generator, and PGi
is the real

power output of the ith generator. PG is the vector of real

power outputs of generators and defined as

PG ¼ PG1
;PG2

;…;PGN

h iT
ð2Þ

Minimization of emission. The total ton/h emission E(PG)

of atmospheric pollutants such as sulphur oxides SOx and

nitrogen oxides NOx caused by fossil-fueled thermal units

can be expressed as

EðPGÞ ¼
XN
i¼1

1022 ai þ biPGi
þ giP

2
Gi

� �
þ zi exp liPGi

� �
ð3Þ

where ai, bi, gi, zi, and li are coefficients of the ith generator

emission characteristics.

2.2. Problem constraints

Generation capacity constraint. For stable operation,

real power output of each generator is restricted by lower

and upper limits as follows:

Pmin
Gi

# PGi
# Pmax

Gi
; i ¼ 1;…;N ð4Þ

Power balance constraint. The total power generation

must cover the total demand PD and the real power loss in
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transmission lines Ploss. Hence,

XN
i¼1

PGi
2 PD 2 Ploss ¼ 0 ð5Þ

Security constraints. For secure operation, the trans-

mission line loading Sl is restricted by its upper limit as

Sli
# Smax

li
; i ¼ 1;…; nl ð6Þ

where nl is the number of transmission lines.

2.3. Problem statement

Aggregating the objectives and constraints, the problem

can be mathematically formulated as a non-linear con-

strained multiobjective optimization problem as follows.

Minimize
PG

½FðPGÞ;EðPGÞ� ð7Þ

Subject to

gðPGÞ ¼ 0 ð8Þ

hðPGÞ # 0 ð9Þ

where g and h are the equality and inequality constraints,

respectively.

3. Principles of multiobjective optimization

Many real-world problems involve simultaneous optim-

ization of several objective functions. Generally, these

functions are non-commensurable and often competing and

conflicting objectives. Multiobjective optimization with

such conflicting objective functions gives rise to a set of

optimal solutions, instead of one optimal solution. The

reason for the optimality of many solutions is that no one

can be considered to be better than any other with respect to

all objective functions. These optimal solutions are known

as Pareto-optimal solutions.

A general multiobjective optimization problem consists

of a number of objectives to be optimized simultaneously

and is associated with a number of equality and inequality

constraints. It can be formulated as follows

Minimize
x

fiðxÞ i ¼ 1;…;Nobj ð10Þ

Subject to :
gjðxÞ ¼ 0 j ¼ 1;…;M

hkðxÞ # 0 k ¼ 1;…;K

(
ð11Þ

where fi is the ith objective functions, x is a decision vector

that represents a solution, Nobj is the number of objectives.

M and K are the numbers of equality and inequality

constraints, respectively.

For a multiobjective optimization problem, any two

solutions x 1 and x 2 can have one of two possibilities: one

dominates the other or none dominates the other. In a

minimization problem, without loss of generality, a solution

x 1 dominates x 2 if the following two conditions are

satisfied:

;i [ {1; 2;…;Nobj} : fiðx
1Þ # fiðx

2Þ ð12Þ

’j [ {1; 2;…;Nobj} : fjðx
1Þ , fjðx

2Þ ð13Þ

If any of the above condition is violated, the solution x 1

does not dominate the solution x 2. If x 1 dominates the

solution x 2, x 1 is called the non-dominated solution. The

solutions that are non-dominated within the entire search

space are denoted as Pareto-optimal and constitute the

Pareto-optimal set or Pareto-optimal front.

4. The proposed approach

Recently, the studies on evolutionary algorithms have

shown that these algorithms can be efficiently used to

eliminate most of the difficulties of classical methods such

as multiple runs and sensitivity to the shape of the Pareto-

optimal front. In general, the goal of a multiobjective

optimization algorithm is not only guide the search towards

the Pareto-optimal front but also maintain population

diversity in the set of the non-dominated solutions.

Unfortunately, a simple GA tends to converge towards a

single solution due to selection pressure, selection noise,

and operator disruption [23].

To overcome these difficulties, the NPGA based

approach is proposed in this work. The elements of the

proposed approach can be described as follows.

4.1. Niched Pareto genetic algorithm

Horn et al. [24] proposed a tournament selection scheme

based on Pareto dominance principles. Unlike the technique

presented in Ref. [22], only two individuals are randomly

selected for tournament. To find the winner solution, a

comparison set that contains a number of other individuals

in the population is randomly selected. Then, the dominance

of both candidates with respect to the comparison set is

tested. If one candidate only dominates the comparison set,

he is selected as the winner. Otherwise, implement sharing

procedure to specify the winner candidate. Generally, the

tournament selection is carried out as follows.

Pareto domination tournaments. Consider a set of N

population members, each having Nobj objective function

values. The following procedure can be used to find the non-

dominated set of solutions:

Step 1: Begin with i ¼ 1:
Step 2: Pick randomly two candidates for selection x 1

and x 2.

Step 3: Pick randomly a comparison set of individuals

from the population.

Step 4: Compare each candidate, x 1 and x 2, against each

individual in the comparison set for domination using the

conditions for domination given in Eqs. (12) and (13).
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Step 5: If one candidate is dominated by the comparison

set while the other is not, then select the later for

reproduction and go to Step 7, else proceed to Step 6.

Step 6: If neither or both candidates are dominated by the

comparison set, then use sharing to choose the winner.

Step 7: If i ¼ N is reached, stop selection procedure, else

set i ¼ i þ 1 and go to Step 2.

Sharing procedure. To prevent the genetic drift problem,

a form of sharing should be carried out when there is no

preference between two candidates. This form of sharing

maintains the genetic diversity along the population fronts

and allows the GA to develop a reasonable representation of

the Pareto-optimal front. Generally, the basic idea behind

sharing is: the more individuals are located in the

neighborhood of a certain individual, the more its fitness

value is degraded [23,24].

The sharing procedure is performed in the following way

for the candidate i:

Step 1: Begin with j ¼ 1:
Step 2: Compute a normalized Euclidean distance

measure with another individual j in the current

population, as follows

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNobj

k¼1

Ji
k 2 J

j
k

Ju
k 2 Jl

k

 !2
vuut ð14Þ

where Nobj is the number of problem objectives. The

parameters Ju
k and Jl

k are the upper and lower values of

the kth objective function Jk.

Step 3: This distance dij is compared with a prespecified

niche radius sshare and the following sharing function

value is computed as:

ShðdijÞ ¼
1 2

dij

sshare

� �2

; if dij # sshare

0; otherwise

8><
>: ð15Þ

Step 4: Set j ¼ j þ 1: If j # N; go to Step 2, else calculate

niche count for the candidate i as follows:

mi ¼
XN
j¼1

ShðdijÞ ð16Þ

Step 5: Repeat the above steps for the second candidate.

Step 6: Compare m1 and m2. If m1 , m2; then choose the

first candidate, else choose the second candidate.

4.2. Real-coded genetic algorithm (RCGA)

Due to difficulties of binary representation when dealing

with continuous search space with large dimension, the

proposed approach has been implemented using real-coded

genetic algorithm (RCGA) [25]. A decision variable xi is

represented by a real number within its lower limit ai and

upper limit bi, i.e. xi [ ½ai; bi�: The RCGA crossover and

mutation operators are described as follows.

Crossover. A blend crossover operator (BLX-a ) has

been employed in this study. This operator starts by

choosing randomly a number from the interval ½xi 2 aðyi 2

xiÞ; yi þ aðyi 2 xiÞ�; where xi and yi are the ith parameter

values of the parent solutions and xi , yi: To ensure the

balance between exploitation and exploration of the search

space, a ¼ 0:5 is selected. This operator can be depicted as

shown in Fig. 1.

Mutation. The non-uniform mutation operator has been

employed in this study. In this operator, the new value x0i of

the parameter xi after mutation at generation t is given as

x0i ¼
xi þ Dðt; bi 2 xiÞ if t ¼ 0

xi 2 Dðt; xi 2 aiÞ if t ¼ 1

(
ð17Þ

and

Dðt; yÞ ¼ y 1 2 rð12t=gmaxÞ
b

� �
ð18Þ

where t is a binary random number, r is a random number

r [ ½0; 1�; gmax is the maximum number of generations, and

b is a positive constant chosen arbitrarily. In this study,

b ¼ 5 was selected. This operator gives a value x0i [ ½ai; bi�

such that the probability of returning a value close to xi

increases as the algorithm advances. This makes uniform

search in the initial stages where t is small and vary locally

at the later stages.

4.3. Reducing Pareto set by clustering

In some problems, the Pareto-optimal set can be

extremely large or even contain an infinite number of

solutions. In this case, reducing the set of non-dominated

solutions without destroying the characteristics of the trade-

off front is desirable from the decision maker’s point of

view. An average linkage based hierarchical clustering

algorithm [26] is employed to reduce the Pareto set to

manageable size. It works iteratively by joining the adjacent

clusters until the required number of groups is obtained. It

can be described as: given a set P whose size exceeds the

maximum allowable size N, it is required to form a subset

P p with the size N. The algorithm is illustrated in the

following steps.

Fig. 1. Blend crossover operator (BLX-a ).
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Step 1: Initialize cluster set C; each individual i [ P

constitutes a distinct cluster.

Step 2: If number of clusters #N, then go to Step 5, else

go to Step 3.

Step 3: Calculate the distance of all possible pairs of

clusters. The distance dc of two clusters c1 and c2 [ C is

given as the average distance between pairs of individ-

uals across the two clusters

dc ¼
1

n1n2

X
i1[c1;i2[c2

dði1; i2Þ ð19Þ

where n1 and n2 are number of individuals in clusters c1

and c2, respectively. The function d reflects the distance

in the objective space between individuals i1 and i2.

Step 4: Determine two clusters with minimal distance dc.

Combine these clusters into a larger one. Go to Step 2.

Step 5: Find the centroid of each cluster. Select the

nearest individual in this cluster to the centroid as a

representative individual and remove all other individ-

uals from the cluster.

Step 6: Compute the reduced non-dominated set P p by

uniting the representatives of the clusters.

4.4. Best compromise solution

Upon having the Pareto-optimal set of non-dominated

solution, the proposed approach presents one solution to the

decision maker as the best compromise solutions. Due to

imprecise nature of the decision maker’s judgment, the ith

objective function is represented by a membership function

mi defined as [8]

mi ¼

1 Fi # Fmin
i

Fmax
i 2 Fi

Fmax
i 2 Fmin

i

Fmin
i , Fi , Fmax

i

0 Fi $ Fmax
i

8>>>><
>>>>:

ð20Þ

For each non-dominated solution k, the normalized

membership function m k is calculated as

mk ¼

XNobj

i¼1

mk
i

XM
k¼1

XNobj

i¼1

mk
i

ð21Þ

where M is the number of non-dominated solutions. The

best compromise solution is the one having the maximum

value of m k.

5. Implementation of the proposed approach

5.1. The basic modifications

In this study, the basic NPGA has been developed in

order to make it suitable for solving real-world non-linear

constrained optimization problems. The following modifi-

cations have been incorporated in the basic algorithm.

(a) To satisfy the problem constraints, a procedure is

imposed to check the feasibility of the initial

population individuals and the generated children

through GA operations. This ensures the feasibility of

Pareto-optimal solutions.

(b) A procedure for updating the Pareto-optimal set is

developed. In every generation, the non-dominated

solutions in the first front are combined with the

existing Pareto-optimal set. The augmented set is

processed to extract its non-dominated solutions that

represent the updated Pareto-optimal set.

(c) A hierarchical clustering procedure based on the

average linkage method is incorporated to provide

the decision maker with a representative and manage-

able Pareto-optimal set without destroying the charac-

teristics of the trade-off front.

(d) A fuzzy-based mechanism is employed to extract the

best compromise solution over the trade-off curve and

assist the decision maker to adjust the generation levels

efficiently.

5.2. Settings of the proposed approach

The techniques used in this study were developed and

implemented on 133 MHz PC using FORTRAN language.

On all optimization runs, the population size and the

maximum number of generations were selected as 200 and

500, respectively. The maximum size of the Pareto-optimal

set was chosen as 50 solutions. If the number of the non-

dominated Pareto-optimal solutions exceeds this bound, the

clustering technique is called. Crossover and mutation

probabilities were selected as 0.9 and 0.01, respectively, in

all optimization runs.

6. Results and discussions

In this study, the standard IEEE 30-bus 6-generator test

system is considered to investigate the effectiveness of the

proposed approach. The single-line diagram of this system

is shown in Fig. 2 and the detailed data are given in Refs. [6,

11]. The values of fuel cost and emission coefficients are

given in Table 1.

Initially, the effect of comparison set size on the

proposed approach performance is investigated. The effec-

tiveness of the proposed approach to produce a representa-

tive Pareto-optimal front is examined for different sizes

starting from a size of 5 to 75% of the population size. Fig. 3

shows the Pareto-optimal front with different comparison

set sizes. It is clear that the performance is degraded with the

increase of comparison set size. It was observed that 10%

M.A. Abido / Electrical Power and Energy Systems 25 (2003) 97–105 101



size gives a satisfactory performance of the proposed

approach.

To demonstrate the potential of the proposed approach

for different problem complexities and trade-off surfaces,

two different cases have been considered as follows.

Case (a). For comparison purposes with the reported

results, the system is considered as lossless and the security

constrain is released. At first, fuel cost and emission are

optimized individually to get the extreme points of the

trade-off surface. Convergence of fuel cost and emission

objectives are shown in Fig. 4. The best results of cost and

emission when optimized individually are given in Table 2.

For completeness, the RCGA was applied to find the

Pareto-optimal solutions where the problem was treated as a

single objective optimization problem by linear combi-

nation of cost and emission objectives as follows

Minimize
PG

wFðPGÞ þ ð1 2 wÞlEðPGÞ ð22Þ

where l is a scaling factor which was selected as 3000 in

this study and w is a weighting factor. To generate 50 non-

dominated solutions, the algorithm was applied 50 times

with varying w as a random number w ¼ rand½0; 1�: The

Pareto-optimal front of RCGA is shown in Fig. 5. Applying

the proposed NPGA based approach, the distribution of the

non-dominated solutions in Pareto-optimal front is shown in

Fig. 6. It is clear that the solutions are diverse and well

distributed over the trade-off curve. Comparing Figs. 5 and

6, it can be concluded that, the non-dominated solutions of

the proposed approach not only have better diversity

characteristics but also were obtained in a single run.

The run time per generation of the single objective

approach to produce only one solution was 14.22 s while

that of the proposed approach to produce 50 solutions was

14.46 s. It is quiet evident that the proposed approach run

time to generate the entire Pareto set is only 1.7% more than

that of the aggregation method to generate only one

solution. This demonstrates that the proposed approach is

much faster and more efficient than the classical techniques

in handling the multiobjective optimization problems.

The results of the proposed approach were compared to

Table 1

Generator cost and emission coefficients

G1 G2 G3 G4 G5 G6

Cost a 10 10 20 10 20 10

b 200 150 180 100 180 150

c 100 120 40 60 40 100

Emission a 4.091 2.543 4.258 5.426 4.258 6.131

b 25.554 26.047 25.094 23.550 25.094 25.555

g 6.490 5.638 4.586 3.380 4.586 5.151

z 2.0 £ 1024 5.0 £ 1024 1.0 £ 1026 2.0 £ 1023 1.0 £ 1026 1.0 £ 1025

l 2.857 3.333 8.000 2.000 8.000 6.667

Fig. 2. Single-line diagram of IEEE 30-bus test system.

Fig. 3. Effect of the comparison set size on Pareto-optimal front.
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those reported using linear programming (LP) [6] and

MOSST [17]. The comparison is given in Tables 3 and 4. It is

quite evident that the proposed approach gives better results.

Case (b). In this case, the power loss has been taken into

account. Convergence of fuel cost and emission objectives

when optimized individually are shown in Fig. 7. The best

results of cost and emission when optimized individually are

given in Table 2. The values of the best cost and the best

emission objectives with the proposed approach are given in

Tables 3 and 4, respectively. The distribution of the non-

dominated solutions of RCGA when applied for 50 times is

shown in Fig. 8. The distribution of the non-dominated

solutions of the proposed approach is shown in Fig. 9. It can

be seen that the proposed approach preserves the diversity

of the non-dominated solutions over the trade-off front and

produce the non-dominated solutions in one single run.

Best compromise solution. The membership functions

given in Eqs. (21) and (22) are used to evaluate each

member of the Pareto-optimal set. Then, the best compromise

solution that has the maximum value of membership function

can be extracted. This procedure is applied in both cases and

the best compromise solutions are given in Table 5.

7. Conclusion

In this paper, an approach based on the NPGA has been

Fig. 4. Convergence of cost and emission objective functions of case (a).

Table 2

The best solutions for cost and emission optimized individually

Case (a) Case (b)

Best cost Best emission Best cost Best emission

PG1
0.10954 0.40584 0.11516 0.41007

PG2
0.29967 0.45915 0.30552 0.46308

PG3
0.52447 0.53797 0.59724 0.54349

PG4
1.01601 0.38300 0.98088 0.38950

PG5
0.52469 0.53791 0.51421 0.54386

PG6
0.35963 0.51012 0.35417 0.51501

Fuel cost ($/h) 600.114 638.260 607.777 645.222

Emission (ton/h) 0.22214 0.19420 0.21985 0.19418

Fig. 5. Pareto-optimal front of objective aggregation in case (a).

Fig. 6. Pareto-optimal front of the proposed approach in case (a).
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presented and applied to environmental/economic power

dispatch optimization problem. The problem has been

formulated as multiobjective optimization problem with

competing fuel cost and environmental impact objectives.

The proposed approach has a diversity-preserving mechan-

ism to find widely different Pareto-optimal solutions. A

hierarchical clustering technique is implemented to provide

the operator with a representative and manageable Pareto-

optimal set without destroying the characteristics of the

trade-off front. Moreover, a fuzzy-based mechanism is

employed to extract the best compromise solution over the

trade-off curve. The results show that the proposed approach

Table 3

Test results of best fuel cost of the proposed approach

LP [6] MOSST [17] Proposed

Case (a) Case (b)

PG1
0.1500 0.1125 0.1080 0.1245

PG2
0.3000 0.3020 0.3284 0.2792

PG3
0.5500 0.5311 0.5386 0.6284

PG4
1.0500 1.0208 1.0067 1.0264

PG5
0.4600 0.5311 0.4949 0.4693

PG6
0.3500 0.3625 0.3574 0.3993

Best cost 606.314 605.889 600.259 608.147

Corresp. emission 0.22330 0.22220 0.22116 0.22364

Table 4

Test results of best emission of the proposed approach

LP [6] MOSST [17] Proposed

Case (a) Case (b)

PG1
0.400 0.4095 0.4002 0.3923

PG2
0.4500 0.4626 0.4474 0.4700

PG3
0.5500 0.5426 0.5166 0.5565

PG4
0.4000 0.3884 0.3688 0.3695

PG5
0.5500 0.5427 0.5751 0.5599

PG6
0.5000 0.5142 0.5259 0.5163

Best emission 0.19424 0.19418 0.19433 0.19424

Corresp. cost 639.600 644.112 639.182 645.984

Fig. 7. Convergence of cost and emission objective functions of case (b).

Fig. 8. Pareto-optimal front of objective aggregation in case (b).

Table 5

Best compromise solutions of the proposed approach

Case (a) Case (b)

PG1
0.2696 0.2227

PG2
0.3673 0.3787

PG3
0.5594 0.5560

PG4
0.6496 0.7147

PG5
0.5396 0.5500

PG6
0.4486 0.4424

Cost 612.127 615.097

Emission 0.19941 0.20207

Fig. 9. Pareto-optimal front of the proposed approach in case (b).
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is efficient for solving multiobjective optimization where

multiple Pareto-optimal solutions can be found in one

simulation run. In addition, the non-dominated solutions in

the obtained Pareto-optimal set are well distributed and

have satisfactory diversity characteristics. The most import-

ant aspect of the proposed approach is that any number of

objectives can be considered.
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