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ABSTRACT

Title : GENERALIZED BALANCED AND APPROXIMATELY
BALANCED REPRESENTATIONS

By : Mohammed Ahmed Ibrahim Ubaid

MajorField : Electrical Engineering

Date : July 1992

This thesis consists of three main parts. In the first part, the conditions on the generalized
Lyapunov matrix equations that are produced from poles clustering theorem is relaxed for
controllable system. This result is used in balanced model reduction to produce a reduced
order model with poles clustered in the same region as the poles of the full order model.

In the second part, when bilinear transformation is used the controllability gramian of
the system is equal to the generalized controllability gramian of the transformed system
with respect to a given circle. This circle is determined from the bilinear transformation.
Using bilinear transformation and the above theorem, a new balanced model reduction
technique is developed. In this technique, the error frequency response is forced to be a
high pass instead of low pass.

In the third part, the complexity of a large scale system makes the computations of
reduced order models based on balancing impractical. However, typically there is a weak
coupling between the subsystems of a large scale system. This is used to derive approxi-
mate balanced-truncated reduced order models of a large scale discrete system with reli-
able and tractable computations. The condition for validity of the approximations and
bounds on the norms of the approximation errors are, also, derived.

MASTER OF SCIENCE DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA



CHAPTER 1

INTRODUCTION

1.1 General

Mathematical modelling of namral phenomenon !eads to coupled high order differ-
ential or partial differential equations and requires very high dimensional representations.
Computational costs and components needed for analysis, testing or implementing of such
systems are quite excessive. Therefore, model reduction methods are needed to reduce the
crder of such system to a2 manageable size. Some of these methods are computztionally
simple such as Pade’ approximation [50], modal approximation [24] and continued frac-
tion expansions [14]. However, they generally have no guaranteed performance. Other
methods depend on the minimization of some performance indices [43],{58],[59]. These
methods are computationally demanding and suffer from many problems such as the

choice of starting guesses, convergence and multiple local minima.

Recently, a method for model reduction based on measure of controllability and
observability was suggested by Moore [44). This method has dramatically changed the
status of model reduction. In this method, arepresentation, termed balanced, is chosen
for the system such that the input-to-state coupling and the state-to-output coupling are
weighted equally so that those state components which are weekly coupled to both input

and output are discarded (Moore [44]). This method is computationally simple requiring
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only standard matrix software. Moreover, it is possible to predict the error between the
frequency response of the full order model and the reduced order model (Enns [16], Glover
[23], Al-Saggaf and Franklin [7]). Furthermore, if the full order model is stable, control-
lable and observable, the reduced model will generically be stable, controllable and
observable [46].

Despite all the properties of the balanced-truncation reduced order model, there is no
guarantee that the poles of the reduced order model will be clustered in the same region as
the poles of the full order model. The locations of the poles affect the time response
characteristics such as overshoots, oscillations, settling time, etc... For the reduced order
model to be a faithful representation of the full order model, the least expected is that the
poles of the full and reduced order models lie in the same region. This will often ensure
that the reduced order model has comparable response characteristics as the full order
model. Moreover, most of the methods for model reduction are based on assumption that
the original system has constant parameters. However, it is shown in [30] that even if the
reduced order model is stable and very accurate approximation of the full order model, the
closed-loop system characteristics may not be acceptable, and the stability of the closed-
loop system may not even be preserved due to the effect of parameters variations. Typi-
cally in practical cases, parameters variations will result in movements of the system poles
from their nominal values. If the system poles for all parameter variations are clustered in
a certain region and the reduced order model has its poles in this region then it will be a
faithful representation not only for the nominal model but also for all models resulted from

parameter variatons within that region.



Balancing provides an effective and a numerically economical way to do model
reduction. However, sometimes it is important that the reduced order model has a small
reduction error at a certain frequency band, especially at low frequency band. This is also
important when using the reduced order model in feedback control system design. There,
maccmamappm:dmaﬁonofthefuﬂordermodelisneededmmeaossover&equcncy
region. Moreover, the balanced realization techniques give good approximarions of the
impnlscresponsebuthaveadrawbackofgivingalargcstcadystaxceu'orforstcpinputs.
This indicates that the approximation is better for high frequency region than low fre-
quency region. For control system design, however, the low frequencies behavior is more
tmportant than high frequencies ones and hence 2 good approximation at low frequencies
is highly important.

Another problem in balanced representation is the determination of the representa-
tion for the case of large scale systems (say order 1000 or more). It is stll a challenging
open problem [39]. Moreover, balancing is intrinsically badly conditioned for system with
states nearly uncontrollable and/or unobservable. Since one of the main uses of balanced
representations is to obtain reduced order models, methods were proposed to drive the
reduced order models directly without computing the balancing transformaton [48].
However, this does not eliminate the numerical difficulties associated with large scale
systems since the solutions of two Lyapunov equations are still needed to derive the
reduced order models. Nevertheless, in many situations, experience and intuition indicate
how to split a large scale system into a set of simpler weakly coupled subsystems for the
purpose of analysis and design. However, the approach that completely neglects coupling
in large scale systems usually leads to unsatisfactory results. Al-Saggaf [2] used e-cou-

pling (weakly coupling) for large scale systems to define the controllability and observ-



ability of continuous-time systems as a power series in the coupling parameter g. Then, a
compromise is made between the numerical practicability of an approximate
balanced-truncated reduced order model and how far it is from an exact balanced-
truncation reduced order model.

1.2 Literature Review

The model reduction problem has been a2 major attraction in system theory literature
and considerable attention has been devoted to it in the last few decades and one has only
to examine the comprehensive list of references compiled by Genesio and Milanese [22] 10
appreciate this fact. Various reduction methodologies have been proposed and algorithms
of diverse computational complexity have been presented. There are time domain and
frequency domain methods. The most popular time domain reduction methods are aggre-
gation, singular and regular perturbation, and balancing. Among the frequency domain
reduction methods are: Pade’ approximation, Routh approximation, Pade’-Routh, and
moment matching, see Al-Saggaf and Bettayeb [64] for a review on model reduction
techniques. In this section, we will be concemed with balanced model reduction. The
following subsections give a literature review of balanced model reduction and its exten-
sions.

1.2.1 Balanced Model Reduction

Balanced model reduction was first introduced by Moore [44]. Mullis and Roberts

[45], while synthesizing minimum round off noise fixed point digital filters, obtained a

system very similar to a balanced system. Pernebo and Silverman [46] studied model

reduction of systems based on balanced realization as well as the stability of the reduced



order models. Bettayebetal. [11], [53] further studied balancing. Silverman and Beittayeb
[10] smdied discrete balancing. Bettayeb and Djennoune in [12] obtained a bound for
closeness of the eigenvalues of the subsystems and those of the full order system. Also,
Al-Saggaf studied discrete balancing and obtained a relation between the eigenvalues of
the subsystems and the full order model for discrete time case [5]. Fernando and Nicholson
[17-20] further smdied balancing and proposed using the slow subsystem of the balanced
system as the reduced order model. This is particularly useful in discrete time systems
because the reduced order system will also be balanced which is not the case if the usnal
reduction method is followed. However, Al-Saggaf and Franklin [7] proposed a method
for obtaining a balanced reduced order model, not necessarily the slow subsystem, for
discrete time systems. Shokoohi et al. [51,52] have considered balancing linear time-
variable systems and Verriest et al. [57] have considered balancing the general class of
analytic time-varying linear systems. Balanced realization of singularly perturbed systems
have been studied by Shahruz and Behtash in [49] and by Bettayeb and Djennoune in [13].
Also, Liu and Anderson [41] obtained a reduced order system after approximating the
balanced system by singularly perturbed form.

There are several algorithms for computing the balancing transformation. One effi-
cient algorithm is due to Laub et. al.[39]). Safonov and Chiang [48] developed a reliable
algorithm for getting the reduced order model without computing a balancing
transformation. This transformation is intrinsically badly conditioned for systems with
some nearly uncontrollable and/or unobservable modes. Hence, this algorithm solves
these numerical problems associated with computing the balancing transformation.
Moreover, this algorithm does not require the system (A,B,C} to be controllable and

observable.



For unstable systems, Kenney and Hewer [36] gave necessary and sufficient condi-
tion for balancing unstable system. Therapos [55] developed a method for balancing
mansformation of unstable nonminimal licear system. Al-Saggaf [3] developed
generalized normal representation for which the results in [36] and [55] are special cases.
The reduction method in [3] results in reduced order models with the same number of
unstable poles as the full order model and with an apriori upper bound on the reduction
error which is very important when using the reduced order models in feedback control

system design.
1.2.2 Frequency Weighted Balanced Model Reduction

Enns [16] is the first o propose a model reduction method based on frequency
weighting and balanced realization. For either input-weighting or output-weighting, his
method yields stable reduced order model; however, when both input-weighting and
output-weighting are included his method fails to guarantee stability of the reduced order
model. Also, no emror bound for his method is k nown. Al-Saggaf and Franklin [7]
developed frequency weighting techniques for continuous and discrete systems that
extends the method of balancing and gave Chebyshev norm error bounds for their method.
An important distinct feature of the method in [7] that is different from other frequency
weighted model reduction techniques is that the frequency weighting need not to be stable
and the reduction error has transmission zeros at the poles of the frequency weighting. Lin
and Chiu [40] proposed another weighted frequency balanced realization. Their method
requires a stable weighting and yields stable reduced order model.
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1.2.3 Approximately Balanced Representation

Jonckheere and Silverman [33] showed that for deformable systems, under some
assumptions, balanced-truncation and optimal Hankel-norm approximation are equivalent
to model truncanon in asymptotic sense as the damping ratio is reduce to 2ero. Jonckheere
[32] and Jonckheere and Opendenacker [34] uwsed a parameterizarion of balanced SISO
systems 10 show the same result. These were shown for a more general system by Gregory
[26] and then even more general systems by Belloch et al. [9]. However, all the above
results were specialized to flexible systems with the damping ratio approaching zero. Al-
Saggaf [2] derived approximate balanced-truncation reduced order model for continuous-
time weakly coupled large scale systems with reliable and tractable computations.

1.3 Thesis Contributions
* Relaxation of poles clustering theorem for controllable systems.

* A new balanced reduction method is presented. This method produces a reduced
order model with poles clustered in the same region as the poles of the full order
model.

* It is proven that the controllability (observability) gramian does not change under
bilinear transformation if we use a generalized controllability (observability) gra-

mian for the transformed system instead of the normal one.



* Another new reduction technique is developed. In this reduction method we can
force the error frequency response to be high pass instead of being low pass, using
bilinear ransformation. This will give good approximation of the full order model
at low frequencies.

* Derivation of approximate balanced-truncation reduced order models for discrete-
timne weakly-coupled large scale systems with reliable and tractable computations.

1.4 Thesis Organization

The remainder of this thesis is organized into four chapters. Chapter 2 will cover the
generalized model reduction. In chapter 3, model reduction using balanced realization
with improved frequency behavior will be presented. Chapter 4 will cover the approximate
balanced-truncation model reduction for weakly coupled systems and finally chapter 5 will
give the summary and recommendations for further research.

In chapter 2, balanced model reduction for continnous-time and discrete-time systems
and their properties will be reviewed. Then, poles clustering theorem will be used to
produce the generalized Lyapunov equation for the desired regions. This theorem will,
also, be relaxed for controllable systems. The modification of balanced model reduction
will be developed. Finally, examples will be used to compare balanced model reduction
and the generalized model reduction.

In chapter 3, bilinear wansformation and its properties will be reviewed. Then, it
will be prove that the controllability (observability) gramian of a system is equal the the
generalized controllability (observability) gramian of the wansformation of the system

using a bilinear transformation. The proposed technique, that produces reduced order



models with samil error frequency response at low frequency region, and some of its
properties are presented. Finally, the proposed technique is illustrated by numerical
examples.

In chapter 4, weekly coupled (e-coupling) systems are defined and approximations
for the controllability and observability gramians of continnous-time systems will be
introduced. The condition for validity of these approximations is given and bounds on the
norms of the approximation errors are derived. Also, a measure of the closeness of the
approximately balanced to the actual one is given. The approximations for the controlla-
bility and observability gramians of discrete-time systems, the condition for the validity of
these approximations and bounds on the norms of the approximation errors are developed.
Finally, examples are used to illustrate the techniques developed in this chapter.



CHAPTER 2

GENERALIZED BALANCED MODEL REDUCTION

In this chapter, balanced model reduction will be modified to produce a reduced order
model with poles clostered in the same region as the poles of the full order model. To do
this, 2 generalized Lyapunov equation will be used instead of the normal Lyapunov equa-
tion. The generalized Lyapunov equation guarantees pole clustering in the desired region.

Balanced model reduction for continuous-time and discrete-time systems and their
properties will be reviewed in section 2.1. In section 2.2, pole clustering theorem will be
used to produce the generalized Lyapunov equation for the desired regions. This thearem
will also be relaxed for controllable systems. In section 2.3, the modification of balanced
model reduction will be developed and will be called generalized balanced model reduc-
tion. Finally, examples will be used to compare the balanced model reduction and the
generalized model reduction.

10
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2.1 Balanced Model Reduction

Recently, extensive studies on balanced representations have been undertaken for the
determination of reduced order models which contain only the most controllable and most
obssrvable states of the system. The main idea behind balancing is that there exists state
space coordinates where the controllability and observability gramians are equal and
diagonal. The diagonal entries of the gramians are called the Hankel singular values of the
system and they provide a measure of how much a state is controllable and observable. A
natural way to achieve model reduction is to keep only the most controllable and most
observable states corresponding to the largest Hankel singular values of the system.

2.1.1 Continuous-Time systems

In this subsection, continuous-time balanced model reduction will be reviewed and the
different characteristics of the balanced reduced order model will be summarized.

2.1.1.1 Reduced Order Model
Assume that the system
Xx(t) = Ax(t) + Bu(t) (2.1a)
y(@)=Cx(1) (2.18)
is asymptotically stable, controllable and observable where A € R™*,, B € R*™, and

C € R™. The controllability gramian P and observability gramian Q are defined as
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P= f-e“’BB e*idy 22
0

0= J;-e"‘C’Ce"dz @.3)

and can be found as the unique positive definite solution of the following Lyapunov
equations:
AP +PA’+BB’=0 24)
A'O+QA+CC=0 ' (2.5)
where (°) denotes the transpose. If the representation of the system of equation (2.1) is
transformed to another representation uwsing a non-singular transformation 7, then, the
new state space representation of the system is (4,B,C) where
A=T'AT, B=T'B, C=CT
and the gramians will be transformed to
P=T"PT~, Q=T'QT, PO=T"PQOT
Thus, the gramians P and Q depend on the state-space coordinates. However, the eigen-
values of their products PQ are invariant under state space transformations anC are
input/output invariant. The square root of the eigenvalues of PQ are called the Hankel
singular values of the system G(s)=C(s/—A)’B and they are denoted by
o; where ;= l%(PQ) and A;(PQ) is the iTh eigenvalue of PQ.
A realization (A4,B,C) of G(s) is said to be balanced, if P =0 =Z where
X =diag(c,,0,,...,0,), G;206,2...20,20. The states of a balanced representation are
balanced between controllability and observability. Thus, they represent a convenient
structure for model reduction since those states having week controllability and week

observability can be neglected without causing any imbalance in controllability or in
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observability properties of the remaining states [44].
Let the balanced system be partitioned as

DEH e
s c»@ @.6b)

where x; € R” contains the most controliable and most observable states and x, € R*™"
contains the least controllable and least observable states. Also, let T be partitioned

compatibly as
(3 Q) e

O,
where 2, = diag(0,,06,, ...,0,) and X, =diag(oc, ,,,...,,). If

> 1, then the subsystem

r+1

X, =A%, +Bu (-82)

y,=Cx, (2.8b)

is taken as the reduced order model of the full order balanced system and will contain the

most controllable and most observable parts of the system [44].

2.1.1.2 Properties of Balanced Systems

In the following, properties of the continuous-time balanced system and the propertes

of reduced order model are reviewed.
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Theorem 2.1 [46]

Assume that X, and 2, have no diagonal entries in common. Then, both subsystems
(A;,B;,C;) (i =1,2) of the balanced system are asympiotically stable and internally bal-
anced with gramians ¥ (i=1,2).

Theorem 2.2 [16,23}
Let (A,B,C) be a balanced continuous-time system, then the following gives an upper
bounds for reduction error in the balanced scheme
IGUwW)-GUwl_<%0,, +....+0,)=2r(D) 29)
where G(s)=C(sI —A)'B, G(s)=C,(sI —A,;)”B,, tr denotes the trace and infinity norm
is defined as
IX(H-= sup OX(jw)] 2-10)

and o(X) is the maximum singular value of X.

2.1.2 Discrete-Time Systems
A review of the discrete-time analogue of the results in the last subsection will be given
here. Although, the analysis of discrete-time balanced systems is similar to that of
continuons-time balanced systems, there are some major differences between the two.
Assume that the following discrete-time system is asymptotically stable, reachable and
observable
x(k +1)=Ax(k) + Bu(k) (2.11a)
y (k)= Cx(k) (2.11b)

The reachability gramian P and observability gramian Q are defined as
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P= éoA *BB/(AN 2.12)
0= z@ycea @.13)

2nd can be found as the unique positive definite solution of the following Lyapunov
equagons:
APA’-P +BB"=0 (2.14)
A‘QA-Q+C'C=0 (2.15)
As in the continuous-time case, it is possible to find a transformation martrix which makes
the two gramians diagonal and equal 10 £. The rest of the analysis required to obtain the
reduced order model is completely analogues to that of the continuous-time case; there-
fore, it will not be repeated here.
If the discrete-time system is balanced, then every subsystem is asymptotically stable
as it is shown in the following theorem
Theorem 2.3 [46]

Assume the system (2.11) is asymptotically stable and that either the reachability or
observability gramians is non-singular and diagonal. Then every subsystem is asymptoti-
cally stable.

Thus, for discrete-time systems, a stronger results for asymptotic stability of the
subsystems is true than continuous-time systems. On the other hand, only weaker results
are obtained for the reachability and observability of the subsystems as shown in the fol-
lowing theorem.

Theorem 2.4 [46]

Assume that the partitioning (2.6) is made for the discrete-time system (2.11) so that
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©,>G,,,- Ihen, the subsystem (4,,,B,,C,) is reachable and observable.
Theorem 2.5 [4,6]
Let (A.B,C) be a balanced discrete-time system, then the following is an upper bounds
for reduction error in the balanced scheme

1GE)-G ™ _<20,.,,+...+6)=2r(T)

and strict inequality holds if 6; ¢ G;,, foranyi,r<i<mn-1
2.1.3 Determination of the Transformation Matrix 7

There are several algorithms for computing the balancing transformation. One efficient
algorithm is due o Lanb et al. (1987)[39). In this algorithm the balancing wansfarmation
1s computed as follows

@) Compute P and QO
(ii) Compute Cholesky factors of the gramians
P=LL'; Q=LJL’, @15)
where L. and L, denotes the lower triangular Cholesky factors of P and Q
respectively.
(iii) Compute singular value decomposition of the product of the Cholesky factor
L' L =UZV’ (2.16)

(iv) Form the balancing ransformation and its inverse as follows

1
T=LVXI®* T'=XUL’, (2.17)
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2.2 Pole Clustering Theorems

In stability studies of linear time-invariant systems one is often concerned with the poles
locarion of the system. Most famous are regions of pole clustering with respect to the left
complex plane and the unit circle. The notation of relative stability introduces more
regions. In general, one may ask: given a marrix A and an algebraic region S in the
complex plane, find the necessary and sufficient conditions for eigenvalues of A to lie in
S. Important results on pole clustering can be found in [1},{15],[27-291,[35].

In this section, we are concerned with second order regions such as ellipses, parabolas,
circles, etc,... These regions are described by

S ={E,Y) Yoo+ Niok + %X +YorY + V¥ + Yoy <0} (.18)
LetA € C*, A be anecigenvalue of A,x =Red,y =ImA and 6(A) = {A,,A,, ...,A, } is the
spectrum of A. The following theorem states the necessary and sufficient conditions for
o(A)e S.
Theorem 2.5 [29],[35]

Let A € C™ and consider S with ¥, +7¥,2 0. For 6(A) € S, it is necessary and suffi-
cient that given any positive definite Hermition matrix M € C*, there exists a unique
positve definite Hermition matrix H € C*™ such that

Cool +CooAH + CoAH + CoHA + coH(A") + ¢, AHA" =M .19)

where

- 1 . .
Coo = Yoos cm:clo:E(Yxo'*“'Yox)» i=V-1

1 L -
n =30+l € =00 =7 (=) + ]
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and * denotes the complex-conjugate transpose.

In the Lyapunov equation for continuous- or discrete-time systems used for balanced
model reduction, BB’ or C"C (which is equivalent to M in the above theorem) is positive
semidefinite. Therefore, the above theorem needs to be generalized to positive semidefi-
nite matrices. This can be done for controllable systems in the following theorem.

Theorem 2.6

LetA € C™ and consider S with Y + ¥ 2 0. For 6(4) € S, itis necessary and suffi-
cient that given any matrix, B € C™ with (A,B) is controllable, there exists a unique
positive definite Hermition marrix H € C™ such that

CooHl + CroAH +CxA’H + i HA" + coH(A"Y + ¢, AHA" =-BB" (2.20)

where

- 1 ;
C0o=Yo Cox =Cm=5(7m+'701)

1 - 1 .
Cy =§(Yzo+7m)’ Ce=Cxo =Z[('Yzo ~Yo) +iM,]

Moreover, if (2.20) still has positive definite solution H for B and A; S, then A; belongs
10 the boundary of S.
Proof
Sufficiency : LetA'v =Av => v"A =2v", x =Rel and y =Im)\. Multiplying (2.20) from
left by v*, from right by v and afier simplifications we get
(too+ YioX +¥anX" + YorY +Ye¥ "+ Y,y V' Hv = —v'BB"v
since v"Hv >0and v'BB'v 20, this implies
Yoo+ YaoX ook VoY +¥oay* + %%y <O

Since (A,B) is controllable, then v'B #0. Thus v’BB"v #0; which implies
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Yoot Tiok + Yoo+ Yoy + Yy + %Xy <0 = o(4)e S
Necessity : Let A€ S, we want to prove that for every B with (A,B) controllable there
exists 2 positive definite solution H of (2.20). Since ¢;; can not be negative, the proof will
be done forc,, =0and ¢;; > 0.
Let ¢;;=0, equation (2.20) becomes

K'H +HK =-BB"
where =%cml+cmA FoA2

If vis an eigenvector of A, then itis also an eigenvector of K. Hence, (A,B) is controllable
implies (K,B) is controllable.
Let % and A be eigenvalues of K and A respectively, then

R=3 ot b+ e
and let x =ReA and y =Im) and after simplification we get
Ref== 2 2ty
e —2(7m+'Ylox‘|"Yzox +Yor¥ +¥¥ +N0Y)

Clearly ReXA <0, because L€ S. Hence, the Lyapunov equation has a unique positive
definite solution H.

Let ¢;,>0, equation (2.20) is equivalent to n’ linear equations, whose n®x n? coefficient
matrix has
Yoo+ Yook + ook + VoY + Yo + VoY
x=Rek,y =Im};, andi,j=1,2,...,n
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as its eigenvalues. Since ) e §, (2.19) has a unique solution. From theorem 2.5, for any

positive definite M, their exist a positive definite H solution of (2.19).
M,=tBB"+(1-)M

let
0<r<1

Clearly, M, is positive definite for 0 <z <1 and positive semidefinite for r=]. Equation
(2-19) has unique solution H, and the eigenvalues of H, are real and vary continuously with
1. Hence if we prove that H, never becomes singular, wccoﬁpletetheprovc. Let

B ©
H=|""
0 0

we substitute H=H, in (2.19). Then every nx n element of the matrices on the left of (2.19)
is zero except that of ¢,,AHA". Hence we armrive at the contradiction to the fact -M, is
negative scmidefinite, since ¢,,AHA" is positive semidefinite, because c,, > 0.

The solution to equation (2.20) will be called the generalized controllability gramian. The
above theorem will be used to find Lyapunov-type matrix equations for sectors, circles,
ellipses, parabolas and vertical strips in the following examples. In all examples, sym-
metric regions with respect to the x-axis are chosen because the poles of any system are
symmetric with respect to the x-axis.

Example 2.1 Pole clustering inside a sector

Consider the sector shown in figure 2.1a, and described by
S={(,y):-y+mx+b <0}
The condition Ag, + Ay 2 0 is satisfied because Ay +A,y =0+0=0. Thus



- 1 .
cw=b, cy=cCy =§(m —i)and cp=¢p=¢, =0

and (2.19) becomes
2bH +(m —DAH +(m +i)HA" =—-M (221)
Example 2.2 Pole clustering inside a circle
Consider the circular region with radios r and center at — shown in figure 2.1b and
described by
S ={G.y)xc+)’+y*~r* <0}
The condition Ay, +24,,=1+1=22>01is satisfied.
Thus Gy =0 1%, €;p=Cy =0 C;;=1, and cy=C, =0
and (2.19) becomes
(AH + HA")+ AHA" +(c@-r)H =-M 222)
Example 2.3 Pole clustering inside an ellipse
Consider the region inside the ellipse shown in figure 2.1c and described by
S ={(x,y):(x-;—f)2+z—:—l <0}

The condition Y+ = 1+(§)’20is satisfied.

Letc =(%Tmcn

1
Co=0"—a% co=Cp=0, cm=cm=%(l ~c)and ¢, =§(l +c)



and (2.19) becomes
(©@—a)H +a(AH +HA')+%(1 —O)[AH +HAY] +%(1 +C)AHA =M (2.23)
Example 2.4 Pole clustering inside a hyperbola

Consider the hyperbola shown in figure 2.1d, and described by

2

Xy
S ={(x,y):—a;—§—' 1 <0}
The condition Yy, + Y, 2 0 is not always sarisfied

a a
Yot Yw= 1—(3)’20 = -1 S.-b-.<_ 1
This means that the asymptotes of the hyperbola should have slopes between -1 and 1. Let
c =(§)z, then
2 1 1
Co=—08) Cq=C,=0, cu=c,,=z(l+c), andc,,=i-(l -c)

and (2.19) becomes

—a’H +%(1 +o)[AH+HAY] +%(1 —c)AHA" =-M (2.24)

Example 2.5 Pole clustering inside a parabola
Consider the region inside the parabola shown in figure 2.1e and described by
S= {(x,y):yz-!-k(x +0)<0}

The condition ¥, + Y, =1 +0=1 is satisfied. Thus

1 -1 1
Coo = OK, col"_‘clo:ik: C(n=czo='j4—aaﬂdcu=z
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and (2.19) becomes
akH+%k(AH +HA')-%[A2H +H@AY] +%AHA'=—M (2.25)
Example 2.6 Pole clustering inside a horizontal strip
Consider the region inside the horizontal stip shown in figure 2.1f, and described by
S={@,y):-w' +y’ <0}
The condition Ay, +2A,=1+0=1 is satisfied. Thus

-1 1
cmz—wz’ cm=cm=0’ %:%:T,andcu=5

and (2.19) becomes

—-wH -%[A’H +H@AY] +%AHA'=—M (2:26)

2.3 Generalized Balanced Model Reduction

Examining the balanced model reduction, we note the following. The poles of a stable
continuous system are clustered in the left half plane and the system satisfies the standard
continuous-time Lyapunov equation. By using the continuous-time Lyapunov equation for
model reduction, the reduced order model will be stable, i.e. the poles of the reduced order
model are clustered in the left half plane. Similarly the poles of stable discrete-time system
are clustered inside the unit circle and the system satisfies the standard discrete-time Lya-

punov equation. If the discrete-time Lyapunov equation is used for model reduction, the



reduced order model will be stable, ie. the poles of the reduced order model will be
clustered inside the unit circle. Hence, if the poles of the system are clustered in some
region and if a Lyapunov type equation that is satisfied by the system can be found, then
this Lyapunov equation may be used, instead of continuous-time or discrete-time Lyapu-
nov equations, to produce a reduced order model with poles clustered in the same region.

We will restrict the regions to second order regions S which are described by equation
(2-18). Second order regions are chosen because they are simple 1o describe and they
represent the most regions of interest. The algorithm, for obtaining reduced order models
with poles clustered in S, is similar to the balanced model reduction with replacing the
controllability or observability gramian with the generalized controllability or observabil-
ity gramian (2.20). The following algorithm gives parallel steps to the balanced model
reduction algorithm given in [39).

Step 1 Solve for the generalized controllability gramian and the standard observabil-
ity gramian
CooP +C1oAP +Co AP + ¢y PA" +cpP(A"Y + ¢ ,APA"=—-BB" (2.27)

A'Q+0A=-C'C (2.28)
Or solve for the standard controllability gramian and the generalized observ-

ability gramian
AP +PA"=-BB’ (2.29)

o0 +C1oA 0 +Cog(A"Y'Q + ¢, 0A +Cu0A% + ¢, APA =—C'C (2.30)



Step2

Step 3

Step 4

Step 5
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Compute the Cholesky factors of the gramians

P=LL'; Q=LL’, @31)
where L  and L, denotes the lower triangular Cholesky factors of P and Q
respectively.
Compute the singular value decomposition of the product of the Cholesky

factors

L' L =UzvV’ (2.32)
The balanced transformation matrix T, its inverse and the balanced system are
given by
2 2
T=LVZ T'=XUL’, 2.33)
A,=T'AT; B,=T'B; C,=CT 239)

Parttion the balanced system (4,,B;,C;) as

Ay Ay B, _ L 0
Ab:(AZI An} B":(Bz} C,=C Gy z—(o Z‘J (2.35)

and the reduced order model is (A,;,B,,C,)-

In this algorithm, one standard Lyapunov equation is used to guaraniee the stability of

the reduced model and one generalized Lyapunov equation is used to guarantee clustering

of the poles of the reduced order model in S. In step 1 of the algorithm, we use either the

generalized controllability gramian or observability gramian. There is no known optimal

way to choose either one of them. Nevertheless, they will be compared by simulation.

Also in some cases such as the reduction of unstable systems, the two generalized gramians

should be used. Otherwise, P or Q will not be positive definite.



The generalized balanced model reduction will produce a generically controllable and
observable reduced order model becanse the weakly conrrollable and weakly observable
states are neglected. The reduced order model will also be generically asymptotically
stable because if we partition the observability gramian (2.28) as in (2.35), we get

ApZ+ A, =-CC, (236)
Since the reduced order model is generically observable, it is generically asymptotically
stable from (2.36). The stability can also be shown using the controllability gramian
(229). To determine if the poles of the reduced order model are clustered in S, consider
the generalized controllability gramian (2.27) Using the partitioning (2.35) and after sim-
plifications, we get

Coo%y + ATy +CaALE, e DAy + T A + Cpdn DA
=-B:B; - CxfrAnT, ~ CoZiAnAn ~ CA DAL @37
The reduced order model has poles clustered in S, if the right hand side of (2.37) is
negative definite. The terms -B,B, and —c,,A,2,A,, are negative semidefinite since
Cu =-;'(7«Q+L,,) 20. The other two terms, —C,0A,,4,,%, — CpXAnAs,, are not known to be
definite. Butif ¢, =0 =0, then (2.37) is satisfied and the reduced order model is proven
to have poles clustered in S. The restriction ¢g, = €, = 0 will produce first order regions or

circles. Finally, we point out that the reduced order model is not internally balanced, this
is clear from (2.37).



2.4 Examples

In the following, the generalized model reduction technique is applied to three exam-
ples. In the first one, 2 ninth order transfer function model is reduced to a third order
model. The poles of the system are clustered zround the line s=-1. Using balanced model
reduction, the poles of the rednced order model are clustered around the line s=-0.3. The
generalized model reduction is used to restrict the poles 0 be clustered in an ellipse with
center at s=-1, and major axis with length 8 along y-axis and minor axis with length 0.2
along x-axis. In the second example, a sixth order system with three-inputs and three-
outputs is used. The poles of the system are clustered in a sector with slope 0.2867. After
reducing the order of the system to 2 third order using the standard balancing technique,
two poles of the reduced order model became outside the sector. Then, the generalized
balanced model rednction is applied to produce a reduced order model with poles clustered
inside the sector. Example three is 2 reduction of sixth order model of fighter described in
[47). This model has two unstable poles. Therefore, the balanced model reduction can not
be applied. However, the generalized balanced model reduction can be applied to reduce
it. In this example, the generalized balancing is applied four times. In each time, the
reduction is performed with respect to a different region.

Example 2.7
The transfer function of a closed-loop system is given by [42]:

(s +4)(s +25)[(s +3)*+8)

Ge)= (s +0.9846) [(s +0.9998)" + 15.9928] [(s + 1.0018)*+9.032} [(s +0.9936)*+3.95) [(s + 1.0125)* + 1.0255]

It is obvious that all the poles have almost the same real part. When the balanced model
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reduction is used, the reduced order model is

_ —0.2466(s —2.2591)
(s +0.2948)+0.7100

G.(s)

and its poles are located at -0.2948 +0.8426i as seen in figure 2.2a . Clearly, the poles of
the reduced order model are far a way from the poles of the full order model. In order to
getareduced order model with poles located in the same region as the full order model, we
choose an ellipse that contains all the poles. This ellipse has center at s=-1, major axis has
length 8 along the y-axis and the minor axis has length 0.2 along the x-axis as is shown in
figure 2.2a . The generalized balanced model reduction is applied twice. First the gener-
model is

-0.3996(s —2.2304)
(s +0.9758)* +0.8789

When the controllability gramiam and generalized observability gramiam are used, the
reduced order model becomes

G*,(S )=

—0.4044(s —2.2417)
(s +0.9992)*+0.8315

Gun(s)=

Clearly, from figure 2.2a both reduced order models have their poles clustered inside the
ellipse.

Figure 2.2b shows a plot of the maximum singular value of the transfer function of the
reduction error for each method versus frequency. The standard balanced model reduction
has a smaller error than the generalized one. However, this is expected, because we are
restricting the left half plane to an ellipse. Hence, the price that we pay for pole restriction,

is this increase in the error frequency response. In [60], a similar statement was made.
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That is, when the region that encloses the poles is increased, the error response is
decreased and vice verse. Therefore, as rule of thumb, it is better to make the region that
encloses the poles as big as possible in order to make the error decreases.

Figure 22c shows the step responses of the full order, the balanced and generalized
balanced reduced order models. The step response of the balanced reduced model is closer
to the step response of the full order model, but there is a big difference in the transient doe
to the oscillations in the balanced reduced order model. While there is a big difference in
the steady state of the generalized balanced reduced model and the full order model, they
have similar shapes and transients.

Example 2.8

Coansider the following sixth order system with three-inputs and three-outputs given in

[42}:

(03110 1.0280 0 0 20000 -6.3000)
~0.1100 -1.2560 0 -63000 -1.0370 4.1000
Azl O 0 -1.3000 0 0.0048 0
0 0.0025 0 -0.1760 -0.0030 0
0 -0.0380 -6.4000 -3.7500 -0.97500 0
L 00250 —0.0400 0 0 -00091 —1.8400)
(00300 O 0 )
0 0 00520
p-|00039 0 )
0 00025 0
00244 0 0
L 0 0  0.0370)
(0 0 10000 O 224 0
C=| 0 22400 0 1.0000 0 ]
\2.2400 O 0 0 1.0000)

The poles of the system are :
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—0.1621,-1.4942+0.4188i,-0.4761,-1.1985,~1.0328,

They are clustered inside a sector with slopes +0.2789 as shown in figure 2.3a. The
reduced order model vsing balancing is

(-0.0807 01678  0.1828 )
A, =] —00484 -05654 -09826
\—00381 10616 -2.1617)

(0.1094 —02385 -0.0676)
B, =] -0.1316 -0.1482 03705
_ 00612 00688 -0.3271)

(00525 -00181 00011 )
C.=| -00122 03446 0.1506
\ 02655 —02398 -0.3046)

The poles of the reduced order model are-0.0921,-1.3578 £0.6375i. They are not inside
the sector, as can be seen in figure 2.3a. The generalized balanced model reduction will be
used to produce 2 reduced order model with poles clustered inside this sector. But the
generalized Lyapunov equation far a sector (2.21) gives a solution with complex coeffi-
cients. The balancing transformation T will also be complex. Hence, the transfer function
of the reduced order model will be complex. This is not acceptable since there is no real
system with complex coefficients. Thus another approach will be used.

Consider the hyperbola (2.24) with a tending to zero and ¢ =(0.2789)°>. This is the
degenerate case of hyperbola. It is two intersecting straight lines of slopes 0.2789 and
passing through the origin. Now, we can use the generalized Lyapunov equation of the
hyperbola to make the poles of the reduced order model cluster inside the sector. Since,
there are two sectors one in the left half plane and the other in the right half plane, there is
a possibility of getting poles of the reduced order model in the right half plane. However,

This will not happen, because the other Lyapunov equation (2.28) or (2.29) will ensure
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that the poles of the reduced order model are clustered in the left half plane. Applying this
method, the reduced order model using equations (2.27) and (228) is

(07314 -08704 -0.6702)
A, =| -04729 -08979 -09020
. 00893 00878 —1.3568)

(00370 -00376 -0.0378)
B,,=| —00029 00673 -0.0351
(—00344 -00623 0.1048 )

(00566 —0.1977 0.1064 )
Cun=| -12744 -18762 -0.6177
[ 27432 17545 12146

and the reduced order model using equations (2.29) and (2.30) is

—02688 03011 -0.0969
Ag2=| 03999 -13684 02084
00541 -0.6671 -1.3591

01281 12766 1.1042
B,,=| 06795 03179 -3.4828
21417 04086 -0.3267

-0.0136 -—0.0010 0.0197
Cuz=| 00171 -00601 0.0316
-0.0672 00085 0.0533

Figure 2.3a shows that the poles of the two generalized balanced reduced order models are
clustered inside the sector. Figure 2.3b shows the error frequency response for the two
generalized balanced methods and balancing.
Example 2.9
A sixth order model of a fighter is used in this example. A full description of this model

is given in [47]. The model is
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(~0.0226 —36.6170 —18.8970 —-32.0900 32509 -0.7626
0.0001 -1.8997 09831 -0.0007 -0.1708 -0.0050
A= 00123 11.7200 -2.6316 00009 -—-31.6040 223960
0 0 1.0000 0 0 0
0 0 0 0 -30.0000 0
. 0 0 0 0 0 -30.0000)

g0 00030 0
“lo 000 0 30

C_[01ooo

0
10 00100

and its poles are —-5.6757,0.6898 =0.2488i,-0.2578,-30.0,—30.0 . This model has two
unstable poles. Thus the contollability and observability gramians do not exist and the
solutions of the standard Lyapunov equations are indefinite. Thus, they can not be used in
balanced model reduction. To produce a positive definite P and Q, we should use the
generalized controllability and the generalized observability gramians (2.27 and 2.30)
should be used with region S that includes all the poles of the model. In this example, four
regions are chosen to examine the effect of S on model reduction. The first region denoted
by S, is the region inside the horizontal strip int;:twcting the imaginary axis at s=40.5
shown in figure 2.4a. The second region S, is the region inside the ellipse whose center is
at s=-15 and a major axis of length 40 along x-axis and a minor axis of length 1 along
y-axis shown in figure 2.4b. The third region S; is the region inside the parabola
y*=-0.018(x - 5) shown in figure 2.4c and the fourth region S is the region inside the
parabola y? =% (x +35) as shown in figure 2.4d. The reduced order model for each

region are given respectively as:



(09635 03534 00205 00373
-0.3914 03729 -0.1017 0.1514
—-0.0375 -0.1158 -5.6735 -0.0230
 -0.0227 0.1540 -00766 -59818

(30447 -2.1172
22828 -15712
22617 -1.6333
(—0.1691 0.0526

_[-14341 0.1458 23568 -0.1114)

\—3.2497 3.0096 1.5538 -12736

( 07817 02633 -00037 -0.0354
-02681 05959 00413 -0.0498
00042 00447 -02591 —0.0251
 —0.0011 -00011 00136 -30.0000

(38061 26449

-3.1042 2.1468
1.1672 -0.7788

\—-1.1112  0.8604

42752 -—-3.8495 14443 1.0186

c _(1.5368 -05806 -—0.3559 0.9678)
.=

As,=

(07738 02598 —-0.0099 -0.0022
-02660 06041 -00153 -0.0387
0.0012 0.0008 -30.0000 00161

 —0.0040 -00406 -00020 -0.2562

(38775 -2.6898
3.1361 -2.1647

| -1.1072 08631

| 12365 -0.8291

_(-15420 06123 09692 -0.3059)

\—4.3137 39290 1.0182 1.5032
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(07392 02524 -00035 -0.0178
-02550 06398 -00209 -0.0199
« | —0.0032 -00218 -02647 02084
(—0.0048 -00064 0.1925 -56682

(40071 28498
—-34009 23564
1 -12388 0.8330
L —2.3599 1.7022

(15875 -0.7134 03604 -2.3595
< \4.6067 -4.1786 -1.5485 -1.6629

>
|

The error frequency response for each method is shown in figure 2.4e. It is clear for the
graph, that the error frequency response depends highly on the chosen region. Region S;
gives the minimum error over all the other three regions for this example. The poles of the
reduced arder models for every region are clustered inside the same region as shown in

figures 24a,b,cand d.
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CHAPTER 3

MODEL REDUCTION USING BALANCED REALIZATION
WITH IMPROVED FREQUENCY BEHAVIOR

3.1 Introduction

In model reduction, sometimes it is important that reduction error is small at a certain
frequency band. This is especially important when using the rednced arder model in
feedback control system design. There an accurate approximation of the full order system
is needed at the crossover frequency region. This idea motivared some authors to use fre-
quency weighting for system approximation. Moreover, the balanced realization tech-
niques give good approximation of the impulse response but have a drawback of giving a
large steady state emror for step input. This indicates that the approximarion is better for
high frequencies than low frequencies [4]. For control system design, however, the low
frequencies behavior is more important than high frequency one and hence a good
approximation at low frequencies is highly important.

In this chapter, a simple modification to the reduction technique using balanced real-
ization is proposed to improve its frequency behavior. It is based on the observation that
the error frequency response is similar to the frequency response of a low pass filter.
Therefore, a frequency transformation is used to transform it to high pass, band stop or

band reject filter. Frequency transformation techniques are widely used in filter design and
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can be found in any filter design textbook. However, not all frequency transformations can
be used for purpose of modifying the frequency behavior of the reduction error. A
reswiction on the transformation to be used is that it is one to one. This means that the
frequency transformation formulas for band reject and band stop can not be used. This is
because these transformations are second order and the inverse does not exist or it is not
unique. Therefore, we will concentrate only on the transformation from high pass w low
pass or low pass to high pass.

The chapter is organized as follows: In section 3.2, bilinear ransformation and its
properties will be reviewed. In section 3.3, the proposed technigue and some of its prop-
erties are presented. Finally, in section 3.4, the proposed technique is illustrated by

numerical examples.

3.2 Bilinear Transformation

In this section, a review the bilinear transformation and its properties will be given. Also,
we will prove that the controllability gramian of a system is the same as the generalized
controllability gramian (2.22) of the wansformed system with respect a circle determined
from the bilinear transformation.

A bilinear wansformation is defined as a mapping from the complex plane to the com-

plex plane and is of the form

s_az-!-b
cz+d

(39



with w =|ad —bc| >0
The following lemma is sometimes useful in constructing bilinear transformation between
given domains and in the determination of the region of pole clustering of the transformed
system. First, we observe that a circle or a straight line in the plane separates the plane into
two domains, D™ and D™ both having a circle or a straight line as the boundary. These
domains are called complementary domains of the circle or the straight line and are illus-
trated in figure 3.1.
Lemma 3.1 [62]
A bilinear transformation always maps a circle to a circle or a straight line and always
maps a straight line to a circle or a straight line.
Further, let k be a circle or a straight line in the s-plane having complementary domains
D and D, Let s =22 map k10 k"in the z-plane. Then 5 == maps D onto one of the
complementary domains of k”, and it maps D’ onto the other complementary domain of k.
The following two lemmas give G(s) after bilinear transformation and show that the
bilinear ransformation preserves linearity, system order and minimality.
Lemma 3.2 [60]
Let G(s) be a stable wransfer function matrix of McMillan degree n. Let s=h(z) be a
bilinear transformation that maps the left half plane onto D

az+d
cz+d

h(z)=

with w =|ad - be|'? > 0 and let (A,B,C,D) be a minimal realization of G(s). Then a real-
ization of G(h(z)) ( or simply G(z) ) of the same McMillan degree is givenby (4,,B,,C,,D,)

where



45



A,=(a ~cA)" (dA —bI) (3.10)
B,=w(al —cA)’B (3.11)
C,=wC(al —cA)™ (3.12)

D,=D +cC(al +cA)"B (3.13)

Lemma 3.3 [60]
If w=]ad —bc|"*>0, then (A,B,C.D) is minimal if and only if (A,,B,,C.D),) is
minimal.

A bilinear transformation maps a straight line into a circle or a straight line which can
beconsidcredasach'cleinawidcsense,i.eacirclewithradinsinﬁnity. Now, we want to
ﬁndthccmtermdmemdiusofmcchchmatisproduced&omtansfmnﬁngmcimaginmy
a:dsusingthcbﬂinwmsfounaﬁon.s'::—:. This can be easily found by calculating z at
5=0 and s==o. These two points are the intersection of a diameter with the circle and they

are given as follows

at s=0 (3.14)

at s =oo (3.15)

Let r and x, be the radius and the center of the circle respectively. Hence,

1 ad —-bc
r—-z-lz_-—zol =%z (3.16)
1 ad +bc
and X, --i(z_,+ Zg)=— 2ac (3.17)

Note that x, is a complex number. If a,b,c and d are real numbers, then x, is a real number.
This means that the circle is symmetric with respect to the x-axis.

Now, we are ready to prove that the controllability gramian of the system (A,B,C,D) is
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the same as the generalized controllability gramian of the system (4,,B,.C,,D,) with S
being a circle of radius r and center x,. This is given in the following theorem.
Theorem 3.1

The following two Lyapunov equations have the same solution P.

AP +PA"+BB’=0 (3.18)
2
(AP +PA’)+APA’",+(2—r))P +%B,B’, =0 (3.19)

where A, B, are defined in lemma 3.2 with a,b,c and d real and r and x, are defined in (3.16)
and (3.17) respectively.
Proof

Using the inverse transformation, we get A and B in terms of 4, and B, as follows
A =(cA,+dI)" (aA,+bl) (320)
B =w(cA,+dI)’B, (321)
substituting (3.20) and (3.21) in (3.18) gives
(cA,+dI)" (aA,+bI)P +P(aA,+bI)(cA,+dI)™
+w’(cA,+dI)'BB’ (cA,+dI)* =0 (322)
Multiplying (3.22) by (cA, + dJ) from the right and by (cA, + dJ)’ from the left, gives
(aA,+bI)P(cA’,+dI)+(cA,+dIP(aA’,+bl)+w’BB’,=0
After expanding and simplification, we get

ad +bc bd w?
’ v —_ ’ - )
Y (AP +PA ,)+ac P+ ZacB’B ,=0 (3.23)

APA’ +

From (3.16) and (3.17), we note that

_ad+bc
2ac

and xj—r’=%§-

Xo=



After substituting in (3.23), we get (3.19).

This theorem has been proved for some special cases, Glover [23] for a=b=d=1, c=-1
and Al-Saggaf [4] fora=a, b=af}, c=-1d =.
Using duality, we can also prove that the observability gramian
A'Q+QA+CC=0
and the generalized observability gramian of the transformed system with respect a circle

2
A0 +QA)+AQA,+ (510 +3—C"C,=0

have the same solution Q. Moreover, similar result exists if the two regions are circles,

ie. if D, is transformed into D, using bilinear transformation then the generalized

controliability (observability) gramian of the system with respect to D, is equal to a

constant muliplied by the generalized controllability (observability) gramian of the
transformed system with respect to D,, as in the following corollary.

Corollary 3.1
Let h(s) be bilinear transformation that maps D, into D,. Consider the following two
Lyapunov equations

—x,(AP,+P,A)+AP,A’+(x~r})P,+BB’=0 (3:24)

X (AP +PA)+APA +(2-r)P,+ BB’ =0 (3.25)

where x, and 7, are the center and the radius of D,, x, and r, are the center and the radius of

D, and A, and B, are defined in lemma 3.2 with a,b,¢ and d are real. Then

P, =P, (3:26)
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where yis a real number.
Proof

Let h(s) be decomposed into a composition of two bilinear wransformations A,(s) and
hys)

h(s)=hy(h(s))

wherch,(s)-mls the bilinear transformation that maps D, into the left half plans and
hQ(s)— lsdxebﬂmcartransformanonthatmapsthelefthalfplanemtoDz. Let the state
space mahzanon of a system be (A,B.C.D), the state space realization be (A,,B,,C,.D,)
after applying h,(s) and the state space realization be (A,,B,,C,,D,) after applying hy(s).

Muliply equation (34) by - where w} =gk ~bied we get

2 2 2 2
Wy wy wy w; ,
- (I IB =0
zl[An(zaxcgpl)+(-a7 :clp ] ]+A (Za; Cy ) ¥ rl)(Za, G ) 2a,c, !

and the controllability gramian of (A,B,C,D) is

AP +PA’+BB’'=0
from theorem 3.1 we can see
2
W

2a,¢, !

(327)

2

Similarly, multiply (3.25) by % where w2 =| a,d,—byc,] we get

wy w3 Wi ppr
LA oA B E- R B e




also form theorem 3.1, we see
P=—ip, (328)

Form (3.27) and (3.28) we get

a6 W:

P, = where vy=
1=1, YazCzwf

33 Balanced Model Reduction With Improved Frequency Behavior
Using Bilinear Transformation

In control systems, the low frequency region is much important than the high frequency
region. Unfortunately in model reduction techniques the error frequency response is large
az low frequencies and becomes less and less as the frequency increases. This means that
the reduced order model is not 2 good approximation to the system in the low frequency
region and it becomes a good approximation as the frequency increases. Our objective in
this section is to produce a reduced order model that is a good approximation in a desired
frequency region.

The error frequency response is the same as the frequency response of a low pass filter.
Hence, the error frequency response can be changed to some desired responses using the
standard methods of transforming a low pass filter to high pass, band pass or band reject
filters. These methods are known in filter design fields as frequency transformation. A
review of frequency transformation formulae is given in table 3.1 [63].

As seen in the table, the transformations to band pass or band reject are not invertable.
These transformations can not be used in the proposed methods because it their inverse is

needed. The transformations to high or low pass filters can be written as



Table 3.1 Frequency Transformation [63].

Lowpass filier Substitute s, into the normalized
Transformationto | lowpass filter ransfer function
Lowpass Saorm =i I
(normalization)
Highpas Sem =7
®fs &
Snorm =Tw(§"’?) I
Bandpass BW=0,-0,
O, > 0, L
s =22
nom s &
=
Bandreject

BW =0,-0,

Swm = Normalized Frequency
§ = Variable Frequency
®, = Normalizing Frequency
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az+b —ds +b
o z=
cz+d cs—a

By choosing 2ppropriate values of a,b,c and d the transformation will be to the low or high
pass filters.

The method is basically is to ransform the system to another domain say z-domain.
Then, the moZs! reduction is preformed in the z-domain. Afier that, the inverse trans-
formation is vsed to return back the model to s-domain. This inverse transformation will
act as 2 frequancy transformation for the error frequency response. Therefore, a special
care should bs ézvoted in the design stage for this inverse transformation. If the parame-
ters of the inverse transformation are chosen similar to the frequency transformation from
low pass to high pass, then error response will be low at low frequencies and high at high
frequencies. Hence, their will be a high matching between the reduced order model and
the original modzl at the low frequency region which is the nominal working region for
control system dssign. '

The transformation, that will be used, is the bilinear transformation. As seen in the last
section, the bilinear transformation has many nice properties. It transforms the polesof a
stable system from left half plane into the inside or the outside of a circle, in the wide
sense, of radivs r and center x, given by (3.16) and (3.17) respectively. Let this region be
called S. S can 2lso be defined as the region at which the left half plane is mapped to by
using the bilinear wansformation. Bilinear transformation can also be used to transform
low pass filters into low or high pass filters.

Assume, we have a transfer function G(s) and we want to apply the proposed method on
it. First, wansform G(s) into G(z) using bilinear ransformation. Then, apply the model
reduction technigues on G(z) to get a reduced order model in the z-domain G.(z). Gener-

ally, balanced model reduction is used to produce G,(z). Unfortunately balanced model



reduction does not guarantee pole clustering in S. Since, the inverse transformation will
be used 10 get G,(s) by transforming G(z) from the z-domain 1o the s-domain and the
inverse wansformation maps S into the left half plane. Therefore, if G,(z) has some poles
outside S, they will be mapped to right half plane, hence the reduced order model G.(s)
will not be stable. To solve this problem, generalized balanced model reduction should be
used to produce the reduced order model in the z-domain. In the generalized balanced
model reduction, the reduced order model can be restricted to have poles clustered in S.
The only difference between balanced model reduction and the generalized one is that the
generalized controllability (or observability) gramian (2.22) will be used instead of the
normal controllability (or observability) gramian (2.4 or 2.5). The generalized controlla-
bility (or observability) gramain for S, which is a circle in the wide sense, needs x, and r
given by (3.16) and (3.17) respectively. However, x, and r may not be finite numbers in
the case of a straight line. This will lead to numerical problems. This problem is solved
using theorem 3.1 . Since, the solution of the generalized controllability (or observability)
gramian of the transformed systems is the same as the solution of the controllability (or
observability) gramian of the original system. Hence, to get a reduced order model with
polesclustered in S, use the controllability (or observability) gramian of the original model
and the observbility (or controllability) gramian of the transformed model. The algorithm

of this reduction method is as follows:

Step 1 Choose carefully the parameters of the bilinear transformation so that its
inverse shapes the error as required.

Step 2 Find the transformed systems by calculating A,, B,, C,, D, in lemma 3.2.



Step 3 Perform the generalized model reduction that is described in chapter 2, with P
and Q given by:

a) for continuous-time systems

AP +PA’+BB’ =0
OQA+AQ+C'C=0

b) for discrete-ime systems

APA’-P+BB’'=0
A'QA-Q+CC=0
Step 4 Use the inverse bilinear transformation and lemma 3.2 to get the rednced order
model.

The above algorithm produces generically 2 stable reduced order model. To see this, et
h(s) be a bilinear transformation that maps the left half plane into D. By lemma 3.2 the
poles of G{s)=D+C(sI-A)'B, are clustered in D. Using the results of chapter 2, the poles
of the reduced order model of G(s) are also clustered in D. Using lemma 3.2 again for the
transformation of the reduced order model to the s-plane, the poles will be clustered in the
left half plane after the transformation. Therefore, the reduced order model is stable.

Finally, we point out that this reduction method is similar to the method proposed by
Jonckheere at.el. [60]. Their objective was to reduce the error frequency response as much
as possible by minimizing the analytic region of G(s) and making the region at which the
poles clustered as big as possible. Then, the region at which the poles are clustered is
transformed into left half plane using bilinear transformation. After that, balanced model

reduction is performed to obtain a reduced order model in the z-domain. By using the
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inverse bilinear transformation, the reduced order model in s-domain is obtained. The
difference is clear. They assume G(s) can have poles any where in s-plane except a circle
D. They transform D into the left half plane and the complement region of D is trans-
formed 1o left half plane. In our method, the opposite happens, the Ieft half plane is
transformed into certain circle D. They choose the bilinear transformation such that it
transforms D into the right half plane, while we choose the bilinsar transformation such
that its inverse will ransform the error frequency response from a low pass filter into high
pass filter. Moreover, their method does not guarantee the stability of the reduced order
model while the proposed method produces a stable rednced order method.

The method described in [54] wrns out to be a special case of this method at a=b=0, and

c=b=1.

Examples 3.4

The method is applied to two systems, one is a continuous-time and the other is a
discrete-time model. In each example, each parameter of the bilinear transformation is set
10 zero and the others are changed for several values.

Example 3.1
Consider the following transfer function given in [42]

- 50(s +2)(s + 1)(s +0.3)(s +0.1)
(s +6.0104) (s +0.3009) (s +0.2063) [(s +3.5289)" +4.2634] [(s + 0.81)*+ 1.3508] [(s +0.40230% +0.0856)

G(s)

This transfer function is reduced to a third order model using the method developed in this
chapter. The parameters of bilinear ransformation are chosen as follows:

a) a is set to zero and the other parameters are set as follow



56

i) b=1,c=1,d=1, 10, 100, 1000, 10000 and 100000.

i) b=1, c=1, 10, 100, 1000, 10000, 100000 and d=1.

iii) b=1, 10, 100, 1000, 10000, 100000, c=1 and d=1.
From figure 3.2a , we see that when a=0, the error frequency response is always high pass
and 1t does not depend on the variations of the other parameters. In this case, our method
works very good. It converts the error frequency response from low pass to high pass.
b) b is set to zero and the other parameters set to as follows

1) a=l,c=1,d=1, 10, 100, 1000, 10000 and 100000.

1) a=l1,c=1, 10, 100, 1000, 10000, 100000 and d=1.

iii) a=1, 10, 100, 1000, 10000, 100000, c=1 and d=1.
Figure 3.2b shows the results of part (i). The error frequency response is the same for all
d. Iris high pass, but the error is not very small at the low frequency region. Changes in
d does not effect the error response because d effects only the factor that the system is
multiplyed with in the forward direction of the transformation and in the inverse transfar-
mation the system is divided by this factor. Figure 3.2c shows the results of part (ii). The
error frequency response is high pass and it decreases in the low frequency region as ¢
increases. Figure 3.2d shows the results of part (iii). For a=1, the error at the low fre-
quencies is smaller than the error produced by balancing at high frequencies. The error
produced by the method is much bigger than the error produced normal balancing. Forthe
other values of a, the error looks like the error of balancing except at high frequency it
becomes a constant. In this case, balancing results are better than the proposed method.
¢) c is set 10 zero and the others as follows

i) a=1,b=1,d=1, 10, 100, 1000, 10000 and 100000.

ii) a=1,b=1, 10, 100, 1000, 10000, 100000 and d=1.

i) a=1, 10, 100, 1000, 10000, 100000, b=1 and d=1.
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Fig. 3.2a : Error frequency response for a=0 and varying the other parameters.
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Figure 3.2¢ shows the results for cases, they are all same as the error frequency response
produced by balancing. The variations, in the parameters when ¢=0, do not effect the
error frequency response, because the transformation shifts the jw-axis and multiply by a
factor and the inverse mansformation retums the jw-axis to it original position and divides
by the same factor
d) d is set to zero and the others as follows

1) e=1,b=1,c=1, 10, 100, 1000, 10000 and 100000.

1) a=1, b=1, 10, 100, 1000, 10000, 100000 and c=1.

iii) a=1, 10, 100, 1000, 10000, 100000, b=1 and c=1.
The results of part (i) are identical to those of part (iii) when b=0, the results of part (ii) are
identical to those of part (i) when b=0, and the results of part (iif) are identical to those of
part (ii) when b=0.

Example 3.2

This is an example of ninth order boiling water reactor considered in [21] and is dis-
cretized using a sampling period of 0.1 second. The A, B, and C matrices of the discretized
model are given below.

(04595 -00283 00986 01085 -06198 00561 00661 —0.0001 -0.0046)
-00012 09954 -00104 -00110 00230 -00055 -00076 —0.0000 -—0.0001
-0.1118 02860 00158 -10337 21558 —05115 -07108 —00002 -0.0078
-0.0572 01464 -04960 04559 11033 -02618 -03647 -0.0001 -0.0040
A=| 00010 00005 -00016 00035 06229 00019 -00034 —00000 0.0000
00000 00000 -0.0000 00000 00002 09738 00002 -0.0001 0.0260
00017 00008 -00026 00061 -00010 00031 09907 00004  0.0000
00000 00000 -—0.0000 00001 -00000 00000 00154 09048  0.0000
\ 00000 00000 -00000 00001 00175 00000 00129 -00078 0.9890 |
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(00000 —0.0328)
00000 —0.0006
0.0000 —0.0550
0.0000 —0.0282
B=| 00000 —0.0003
0.0000 -0.0128

—-0.0000 0.1443
—-0.0000 0.0011
L 0.0000  0.0009 )
(0 0000100 O
c={00000010 o0
00000O0COCT1 O
0 00 00 0 0 0 12247

This model is reduced using the algorithm to a third order reduced model. The the effects
of parameters are studied and they are similar to the results get in previons example as
shown in figure 3.3a,b,c,d and e.
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CHAPTER 4

APPROXIMATE BALANCED-TRUNCATION MODEL REDUCTION
FOR WEAKLY COUPLED SYSTEMS

4.1 Introduction

Despite all the properties of the balanced-truncated reduced order model, the computz-
tions of balanced state space representations for large systems (say order 1000 or more) is
sull a challenging open problem [39]. Moreover, balencing is intrinsically badly
condirioned for systems with some nearly uncontrollable and/or nearly unobservable
modes. Since one of the main uses of balanced state space representations is to obtain
reduced order models, methods were proposed to derive the reduced order model directly
without computing the balancing transformation (Safonov and Chiang [48]). However,
this does not eliminate the numerical difficulties associated with large scale systems since
the solutions of the two Lyapunov equations (2.4) and (2.5) are needed to drive the reduced
order model. Typical examples are in power systems where the interconnection of N
generators leads to a state dimension of order 2N-2 and were it was noted that the Lyapu-
nov equation solver fails to converge for systems with more than 200 generators (Troulli-
nos atel. [56]). Nevertheless, in many situations, experience and intuition indicate how to
split a large scale system into a set of simpler weekly coupled subsystems for the purpose
of analysis and design. However, the approach that completely neglects coupling in large
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scale systems usually leads to unsatisfactory results.

In this chapter, a compromise is sought between the numerical practicability of an
approximate balanced-truncarion reduced order model and how far is it from an exact
balanced-truncarion rednced order model. The notation of €-coupling (week coupling) for
large scale systems is used (Kokotovic et al. [38], Kokotovic [37], Jamshidi [31]). The
controllability and observability gramians of the system are defined as 2 power series in the
coupling parameter €

Approximate balanced representation, in a different context than the one advocared
here, were considered by some authors. Jonckheere and Silverman [33) showed that for
deformable systems, under some assumptions, balanced-truncation in an asymptotic sense
is the same as model tuncation as the damping reduced to zero. Jonckheere [32] and
Jonckheere and Opendenacher [34] used a parameterization of balanced SISO systems 10
show the same results. These results were shown for a more general systems by Belloch et
al. [9]. However, all the above results were specialized to flexible systems with the
damping ratio approaching zero.

This chapter is divided as follows: in section 4.2, weekly coupled (g-coupled) systems
are defined and approximations for the controllability and observability gramians of
continuous-time systems will be reviewed. The condition for validity of these approxima-
tions, bounds on the norms of the approximation errars, and a measure of the closeness of
the approximately balanced representation to the actual one are also reviewed. This
sections summarizes results in [2]. Section 4.3 introduces the approximations for the
controllability and observability gramians of discrete-time systems, the condition for the
validity of these approximations and bounds on the norms of the approximation errors.

Finally, section 4.4 gives examples that illustrate the techniques developed in this chapter.



42 Approximate Controllability and Observability Gramians For

Continuous-Time Systems

In this section, the results of Al-Saggaf [2] will be summarized. In [2] approximate
controllability and observability gramiams for continuous-time systems where developed.
In next section, these results will be extended to discrete-time systems.

The system of equation (2.1) is said to be e-coupled if it splits into several independent
subsystems when a scalar parameter € is set to zero (Kokotovic [38]). The system matrices
of an &-coupled system consisting of two subsystems are

All au Bll EB!Z Cll scn
A= B= C= 4.1
(eAm An} (eBu Bz)’ (eca cn) ¢

where A, € R™, B, e R™™, C, e R™™, Ane R™™, BheR™™, C,eR™™,
n=n+n, m=m+m,and p =p,+ p,. The submatrices A;,B; and C; do not depend on
€. Equation (4.1) shows two subsystems, however, generalization to an arbitrary namber
of subsystems is obvious.

From equations (2.4) and (2.5), we see that both the controllability gramian P and
observability gramian Q are analytical in & An approximate solutions to equations (2.4)

and (2.5) is define as a truncated Maclaurian series in € [2), i.e.
N N
P(N)= ZP¢, O.N)=ZO¢ 42)

where

14°P 14°P
;= ——— . =S ——— 4,
F; i! d¢ it ge 4.3)




The following theorem gives a computational procedure for the P,’s. The procedure for
the Q;’s follows by duality.
Theorem 4.1 [2]
Partition the P;’s compatibly with the marrices in equation (4.1) as

P, P P 0 6 P,
P,:(f’ "} then P,,:( e ], i>0, P,,.+,=( , @ ‘”} i>0
P Py 0 P,y Pgug O

where
APy +Pu A’ +B,,B",=0
ApPp+PpAy +B,B, =0
AyPom +PoyAy" +H{ARP i 1p+ P _1pA1 } 4+ Sp; =0
ArPop+ PoipA'n+{AnPoi_1p+Poi 1pA 0} + Sgp =0
AP iip Py pA 1+ {AnPain + PoipA '} + S 135 =0
Su=BpB'y, Sp=B;B’y Spn=0, Sgp=0, i22
Su=ByB'y +ByB", Sgiap=0, i21
Now let A =A,+€&E where the definitions of A, and E are obvious from (4.1).
Lemma 4.1 shows the behavior of the P;’s.

Lemma 4.1 [2]
Define

G=—(ARI+I QA (ERI+I®I) 4.4)

then p(G) <1 implies | P} . < o] P,§ ; i>2 where ® denotes the Kronecker product, p(G)

is the spectral radius of G, a is a positive constant and || P} . is the Frobenius norm of the



matrix P,
Lemma 4.2 below gives a condition for the validity of the proposed approximation
P (N).
Lemmma 4.2 [2]
lim P ,(N)=P if and only if p(eG) < 1

N =san

Lemma 4.3 [2]

Let (&, 4;) be an eigenvalue-cigenvector pair of the generalized eigenvalue problem
Eu; =X A, then (4;,u; ® ;) is an eigenvalue-eigenvector pair of the generalized eigen-
value problem

(E®I+I®EK =p(A, @I +I @ A)x @45)

Lemma 4.3 gives an easy check of convergence than Lemma 4.2. This is becanse G
has dimensions of n*xn? while A;'E has dimensions of n xn. Lemma 4.3 shows that
P(45'E) <1 is 2 necessary condition for p(G)<1. But unformmately sufficiency is not
proven. Al-Saggaf conjectured that p(A;'E) < 1 is also sufficient to have p(G)<1. It
seems reasonable. Lemma 4.3 shows that for a given system if p(A;%(4 ~Ap))> 1, then
P (N) will not converge to P and thus, for any N, it is not a good approximation of P.

Lemma 4.4 [2]
Define Ey(P)=P —-P,(N). If p(eG) <1, then E,(P) satisfies the following matrix
equation
AEW(P)+Ey(P)A" =" *(APy, 1+ Py As) 4.6)
Theorem 4.2 gives an upper bound for Ey(P), which will help in choosing N.
Theorem 4.2 [2]

BENP < C, &' 4.7



70

where C, is a constant independent of N satisfying
C, SUHiri APy 1+ Py A <200 HL | PA  min{l A .1 Ef ;}

and marrix H is defined by

AH+HA'+I=0 4.8

Now given a large scale system such that p(G) < 1 where
G =—(4,QI+I®A) (E®I+IQF)

and E =A —Ay=¢E whar is an appropriate value for € ? Note that G =&G where G is
defined in Lemma 4.1. The rate of convergence of the approximation is determined by
p(eG) = p(G) and thus the choice of & might seem unimportant and, light of equation (4.7),
might be templed to choose a very small value of &. However, if a very small value of € is
chosen, then p(G) will be greater than one and the P;’s will diverge. Thus we have the
situation that _E €P; is converging and the P;’s is diverging which will lead to numerical

difficulties and errors in computing P,(NV) [2]). Thus a value of € < 1 should be chosen as
p(G)<e<1 4.9)
This inequality is clear from
pG)<le p(§)< 1=pG)<eande<l.
Since p(G) is the rate of convergence of P;’s. Hence, the smaller the values of p(G)is the
better. We know that

A
p(G)—p(e)-ep(G)

Therefore, the best value of € is one, and it makes the computations of P,(N) much easier.
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4.3 Approximate Controllability and Observability Gramians
For Discrete-Time Systems

Consider the discrete-time system defined in (2.11). If this system is in the form of
equation (4.1), then it is called &-coupled (weekly coupled) discrete system. From equa-
tions (2.14) and (2.15), we can see that both the controllability gramian P and the observ-
ability gramian Q are analytical in € An approximate solutions to equations (2.14) and
(2.15) is defined as truncated Maclaurian series as in (4.2) and (4.3). The compurational
procedure for P;’s will be given in theorem 4.3 and the procedure for Q;’s follows by
duality.

Theorem 4.3
Partition the P;’s compatibly with the matrices in equation (4.1) as

P,=|_, then P, = i20, Py,;=|.,., i20
(P a P;_,} z ( Y P@'ﬁ wt P @+1B 0

where
A,PyA',, =Py, +B,B’,,=0
ApP A’ =Py +BLB =0
AnPA'y =Py +{B,B’y + BB+ Ay PyA’y +ApPrA’n} =0
AnPoA'y =Py +{BpB 1y + Ay PryA 1y AP 1A +APRA 1} = 0
ApPpA’'n—Pp+{ByB’, +ApPrA’y +ApP A +AYPyA} =0

Anp(zi*mA'zz"Panm‘*‘{AupmlA’zx+A12Paip‘4'n+szpl(zi-lpA'zx}=Os i21
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Alxpaxij’xl‘Pcm"'{Anpm-m"’u'*'Anp'ax-mA'u +ApPo AL} =0, i22

AnPamﬁi’n—Pmﬁ {AzzP'Q-,mA’,2+Aqu_,,,A'n+A2,P¢_mA’2,} =0, i22
Proof:

Let
A=Ay+€eE (4.10)
and
BB’=B,+¢&B,+¢B, 4.11)
where

_(As 0} (0 4u
P70 anf Elan o
U ) - B WO )

0 BpB'y ByB’y +BpB 0 0 BnB’y

Assuming the convergence of P,(N) to P as N — =0 and substituting (4.10) and (4.11) in
(2.14), we get

(Ag+€E) (_ioefp,.) A’y +€E) —(_§°€P5)+B°+FB, +€B,=0 “.12)

Afrer simplifications, we get

al £ a‘P,.)A'o+A0( > e‘*'P,.)E'+ E( > e""Pi)d'o
i=0 i=0 i=0

+E(_>': ¢ *2P,.)£'-- (_ioe‘P,.)+B°+eB, +&B,=0 (4.13)

i=0 i
The zeroth order term of (4.13) is

APA’y—P,+B,=0 (4.14)
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ie All 0 POI PIB A'll 0 - Pm P(B + BUB'II O =0
T 0 AP Po)l 0 A%G)T\P, P, 0 BB,

After simple manipulations, we get the following equations

AyPoA’y ~Py+ByB' =0 4.15)
ApPohp~Po+BpB'n=0 4.16)
AyPeAn =Py =0 “4.17)

Py =0is a solution of equation (4.17) and it is the only solution if A(4,,)A(4,,) = 1. Thus

°lo Py

The first order term of (4.13) is
AP A —P +B,+ AP E'+EP A’ =0 4.18)
i.c All 0 Pll PB A'll o _ Pll PB
i 0 AP\ PO A'p P’y P,

Ay, OYP, O0Y 0 4%
0 AJlo P Jlas, ©
0 A;\(Pu 0)4%w 0)_,
Ay 0 flo Pl 0o a7,)”

After simplifications, we get
AyPyA Yy —Py, =0 (4.19)
ApPrA'n—P,=0 (4.20)
AnPirA’p =Py +{B\ B + BB’y + A\ PyA sy + Ay PpA'y} =0 4.21)
P,, is a solution to equation (4.19) and it is the only solution if | A(4,,)} = 1. Similarly, P,

is a solution to equation (4.20) and it is the only solution if | A(Ap) #1. Thus
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The second order term of (4.13) is

APAs~Py+ B+ APE +EPA’+ EPE’ =0 422)
) Aw OY(Py Pu)(a’y 0) (Py P,
Le. 0 Ax)\Ps P2l O 4} \P, P

BB, 0O A, 0Y 0 P,){O A%,
L a5 ) Bl 9
0 A,z)( 0 P,,)(A'u 0 ){ e An)(}’m 0 )[ 0 A’z,)zo
An O)\Pz O 0 A%) A OJlO PLlla, O
After the simplifications, we get
AP AR=P,=0 (4.23)
A, PoAy =Py +{B,B’, +A,,PA ‘FARP AL FALPRA )} =0 4.24)
ApPrA'n—Pp+{BnB'n + ApPrA'n +AnPrA'n+AnPuA'n}=0  (425)
P =01s a of equation (4.13) and it is the only solution if A(A,,)A(45,) # 1. Thus
SN
The i-th order term of equation (4.13) is
APA'y—P,+AP;_E‘+EP,_ A’ +EP, E'=0, i23 (4.26)

The forms of P;_, and P;_, depend on i. When i is odd, then

P, = Fo-m 0 > Pip= ,0 Fo-m
0 R Pioop 0

and when i is even, then
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P,_ = :0 P(i-m P,_,= PG-Z)I 0
P G-18 0 0 Pﬁ-m

This can be easily proven by induction. Taking the first case when i is odd and replacing
i with 2i+1, we get

[Au 0 Y Paismn Pmm](A'u 0 )_(Pa.-,.,. Pmm]
0 A22 P’G+IB P&'-ﬂp 0 A'zz P’aidp Pn;+1p

Au O)fPow 0 )0 4%) (0 45) 0 Puyp) 0 4% o
0 Ap{ 0 Popfid 0 )4y OfPuy O JAm 0]

The above equation leads to the following equations

AP ai-u)nA'n ~P, (%) 0 @27
ApP, a.'smA'n —P a.'+m=0 (4.28)

AnPo;iipA’n—Poiyip+ {AyPogA 'n + AP axA 2t AP oAy} =0 (429)
The trivial solution solves equations (4.27) and (4.28) and it the only solutions if
IAA )l # 1 and [ A(A)] # 1 respectively. Thus

0 P(zi+lp
R | >
PQ,+]) (P'Qi,lp 0 i21

Finally, taking i even and replacing it with 2i in equation (4.26), we get

0 Ap\P'ap Pap)l 0 A'z) \Pap Pep

A, 0 0 Po_p) 0 Ay
0 Ap\Plaioip 0 A, O
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0 ALY 0  Pu_y)(AW O
Ay O f\Poup O JLO 475

{0 A )Poiim O 0 A%m)_,
Ay OR O Py pjla, 0)

After simplifications we get
ApPopA’'n—Poyp=0 (4.30)
AyPonA =Py + {AyPgi_1pA "2+ AP o 1A, +ARPg AL} =0 (4.31)
ArPorA n=Pap+ {AzP 6 1pA n+ AnPoi-1pA 2+ AnPoi pAn}=0 (432)
Pgip =01is a solution of equation (4.30) and it is the only solution if A(4,,)A(4,,) = 1. Thus

P.=P"‘" 0 i22
x 0 Puyp

The following lemma shows the behavior of the P;’s.

Lemma 4.5

Define

0 1
G=(‘(Ao®Ao-1)'!(Ao®E—E®A°) ‘(Ao@Ao—I)"(EQE)) (433)
then p(G) < 1 implies 1P}, <o\fIPA2 +1PAZ ;i 23 where ® denotes the Kronecker

product, p(G) is the spectral radius of G, « is a positive constant and [ P} ¢ 1s the Frobe-
nius norm of the matrix P;.
Proof
Consider the i-th order term of equation (4.13) given by (4.26)
APA\—P;+AP;_ [E'+EP;_|A+EP,_,E’'=0



Defining Z, = Vec(P,) as a vector of size ,2 formed by stacking the columns of the matrix
P;, then the equation (4.26) is equivalent to the following linear system [25]
(A®A-1NZ,+(A\@E+E®A)Z,_,+(E®E)Z._,=0 4.34)
This equation can be transformed into the following second order difference system
w(i)=Gw(i-1), i=>3

Z,
where w(i)=( z )

(]

K p(G)<1, then fw(i)l  <iw(2)}  where w(i)] 5 denotes the Fuclidean norm of the
vector w(i). Using the definition of w(i), the above eguation implies

1Z_§*+1Z1° s Z)°+1 Z3%)

Therefore
1z} SG\}IZJ2+IZ;I2
Since Z; = Vec(P;), it follows that
IP,-I,,.S(!‘\/IP,I}-{-IP,I}. ;123 (4.35)
Lemma 4.6 below gives a condition for the validity of the proposed approximation P,(N).
Lemma 4.6
Al,im P (N)=P if and only if p(eG) < 1 (4.36)
Proof

Consider the infinite sum }?. €w(i) where the w(i)’s are as defined in the prove of the
i=0

previous lemma. Now
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.;_Soa"w(i) =w(0)+ew(l)+Ew()+ i’(_is(eG)i'-}vG)

i=0

This series converges if and only if p(eG) < 1. In this case w = I £w(i) where wz(f)

and Z= Vec(P). Thus P =A!i_r’n.P,(N).

The value of p(eG)is equal to the value of p(G) when £ = 1. This means the convergence
of the algorithm completely depends only the structure of the system. Theorem 4.4 gives
a bound for this approximation. This bound helps in choosing N. The following lemma is
needed in the sequel and will used in the prove of the theorem.

Lemma 4.7

Let Ey(P)=P —P,(N). If p(eG)< 1, then E,(P) satisfies the following marrix equation

AEy(PYA" = Ey(P) =" APy, A’s— Py, —€EPLE’) 437)
Proof
E,(P)=P-P.(N)= 2¢P,- L¢P,= % &P,
=0 i=0 i=N+1
Thus

AEN(P)A'—EN(P)='_=§ﬂe"(APiA’—P,-)

= I ElAPA’ P +e(APE +EPA")+E(EPE)]

i=N+1

= I E[APA’—P,+e(APo A’ ~P.yy+EP;_E")+E(EPEN)

i+Na+}
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=l_=§ﬂe"[Ao(P‘- ~€P;, )A'y— (P:—€P,, ) +E(P,_,—eP)E"]
=€ APy, A"~ Py, )~ EPLE’
The equality in the third step follows by using equation (4.26).
Theorem 4.4 below gives a bound on the norm of the approximarion error EJP) as a
function of N.
Theorem 4.4
JE, Wi <C,'" (438)
where C, is a constant independent of N satisfying
C, SUHIE | (AP iA's—Pu, ) —€EPLE <ol HI 1P [1Ad L +1ELE+1]
and the matrix H is defined by
AH+HA'+1=0 (439)
Proof
Subtracting equation (4.37) from the reachability gramian equarion (2.14), we get
APA’-P,+{BB'+&"*'(APy. A"y~ Py,,~eEP,E)} =0 (4.40)
Now treating equation (2.14) as a perturbed version of equation (4.40) and using the results
on the sensitivity of the stable discrete-time Lyapunov equation given by Gahinet et al.
[61], We get
NENP . <€ "I HL 1 APy s1A’s— Py, —€EPLE, (4.41)
Using the triangle inequality and (4.35), (4.41) becomes after simplifications and using the

factthate<1

DENP , <€ 'al HI 1P [IAN2+ 1EIZ+1]
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This completes the proof.
Similarly defining Ex(Q) = Q — Q.(NV) and using duality we can show that

JELQN <Cpe'! (4.42)
where C, is a constant independent of N defined in a similar way as C,.

Finally, one may ask: what is an appropriate value for £? to answer this equation, let us
define G s G =€G. Then, it follows that

ep(G)=p(G) (4.43)
Thus p(G) does not depend on € is a constant independent of € and a propenty of the
system. If we choose 2 very small value for e, then p(G) will become greater than one and
the P;’s will diverge. From lemma 4.5, we have

pG)<1 & ép(ﬁ) <l & pG)<es<l 4.44)

The inequality (4.44) gives the bounds t-'or & namely € should be less than or equal one
otherwise € will diverge, and € should be greater than p(G) otherwise P,’s will diverge.
From (4.43), if € is big, p(G) becomes small. This means the P,’s will converge fast.
Therefore, we should make € as big as possible. Thus, € should be equal to one. By
making €=1, the computations for € will be eliminated and P,’s will converge fast

implying few of iterations.

4.3 Examples

In this section, Three examples will be used to illustrate the properties of the algorithm

developed in this chapter. The dependance on N and € will also be studies in these exam-
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ples.
Example 4.1

A wwelve order mode!l of twelve plate absorption system [42] was discretized with a
sampling period of 1 second. The state space representarion of the system is partitioned as

(02092 0.1257 0.0388 0.0081 0.0013 0.0002)
0.1068 02421 0.1325 00398 0.0082 0.0013
00280 0.1126 02430 0.1327 0.0399 0.0082
100049 0.0288 0.1127 02430 0.1327 0.0399
0.0007 0.0050 00288 0.1127 02430 0.1327
\0.0001 0.0007 00050 00288 0.1127 02430,

(0.0000 0.0000 0.0000 0.0000 0.0000 0.0000)
0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
0.0013 0.0002 0.0000 00000 00000 0.0000
0.0082 0.0013 0.0002 0.0000 0.0000 0.0000
0.0399 0.0082 0.0013 0.0002 0.0000 0.0000
\0.1327 0.0399 -0.0082 0.0013 0.0002 0.0000,

p Y
8
]

(0.0000 0.0001 00007 00050 0.0288 0.1127)
0.0000 0.0000 0.0001 00007 0.0050 0.0288
0.0000 0.0000 0.0000 0.0001 0.0007 0.0050
0.0000 0.0000 0.0000 0.0000 0.0001 0.0007
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
(0.0000 0.0000 0.0000 0.0000 0.0000 0.0000)

(02430 0.1327 0.0399 0.0082 0.0013 0.0002)
0.1127 02430 0.1327 0.0399 0.0082 0.0013
0.0288 ©.1127 02430 0.1327 00398 0.0081
0.0050 0.0288 0.1127 02430 0.1325 0.0388
0.0007 0.0050 0.0288 0.1126 02421 0.1257
(0.0001 0.0007 0.0049 0.0280 0.1068 0.2092)
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The condition (4.36) in lemma 4.6 should be first checked to make sure the algorithm will
converge. The value of p(G) is 0.1984 which means the algorithm will converge for any

value of €. The value of € will be chosen according to (4.44) 1o guarantee the convergence
of P’s and Q;’s. It should satisfy the following

0.1984<e<1

The following values of € were used

{0.2,0.3,04,05,0.6,0.7,0.8,0.9,1.0}

However, it was noted that the rate of convergence of the P;’s and Q,’s were the same for

all values of € as can be seen from ﬁgx;rcs 4.1a and 4.2b respectively. This is due to the fact

that the coupling in this system is very weak. Therefore, The zeroth order approximation

is a very good approximation and the contribution of the higher order terms is negligible.
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Thus g has almost no effect on the computations of P ,(N) and Q_(N)- Figures 4.1a and
4.1bshow a plot of | P§ /A Pl - and } O /f Ol r respectively where P and Q are respec-
tively the controllability and observability gramains of the system. From these plots we see
clearly that | Pl . =] Pl r and | Ql ; = | Ol  indicating the same conclusion regarding the
effect of € on the approximation. Figures 4.1c and 4.1d show respectively a plot of
EEN(P) /i Pl < and R Ex(Q)f /1 Ol - versus N. Again these plots indicate that the zeroth
order approximation is 2 good approximation for both P and Q and the approximation
becomes exact for values of N > 3.
Finally, figure 4.1e shows a plot of the reduction errors for balanced-truncated and
approximation balanced-truncated model reduction methods for several values of N. Itis
seen from this figure that the two methods give the same error for values of N 2 3.
Example 4.2

The system chosen in this example is not weakly coupled. However, it still satisfies the

condition of equation (4.36). Therefore, the approximation algorithm can be used.
Consider the seventh-order model of single machine-infinite bus power system [42].

This system was discretized with a sampling period of 0.25 seconds and partitioned as

(09949 02444 —0.0062 -0.0011) (00006 -0.0001 0.0001)
A | —00384 09542 00495 -0.0056 A.|—00027 -0.0004 0.0003
171 -0.1029 -00126 07994 00348 [ " | 0.0012 00001 0.0014
\-02114 -0.0386 06330 0.0278 | ( 0.0011  0.0001 0.0011
(-0.2321 0.0468 —0.0409 -0.0018) (0.0014 -0.0001 -0.0001)

Ay=|-04944 -0.1148 03781 00168 | A,=|0.0009 00001 0.0006
(-03087 -0.0734 -0.0532 -0.0021) (0.0006 0.0000 —0.0001
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Fig. 4.1a : The normalized Frobenius norm of P;.
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Fig. 4.1b : The normalized Frobenius norm of Q..
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~11.3888 2.2860 2.3474 —0.4686
0.9949 —0.0049

7.2007 —1.4505 31212 06356
7.1947 —~1.4475 . 625

Cu=0 0 0 1), C=(0 0 0), C,=0 0 0 0), C,=(0 0 1)
The value of p(G) is 0.1007 and the approximarion algorithm was applied for different
values of € and N.

Figures 4.2a and 4.2b show respectively plots of § P§ /1Pl and | O] /10Ol for
different values of €. From these plots, as expected, increasing the value of €, leads to
faster rates of convergence of the P;’s and Q,’s. Figures 4.2c and 4.2d show respectively
aplot of §E,(N) /K P . and § E,(N % Of £

P; and Q; converges at the eighth iteration as can be seen in figures 4.1a and 4.1b.
However, Ex(N) and Ey(N) converge to zero in second iteration as can be seen from figures
42c and 4.2d. The convergence of E;(V) and E,(N) is much important than the conver-
gence of P; and Q,, because if E,{N) and E4(N) converge to zero, P (N) and Q. (N) will
converge to P and Q. Figures 4.2¢ through 4.2i show the error frequency response for
different values of N. For N>7, the emor frequency response for the approximate
balanced-truncation model reduction matches the error frequency response obtained using
balanced-trucation model reduction. The convergence is not very fast because the coupling
between the subsystems is strong.

Example 4.3
A six-plate gas-obsorber system described by Bahnaswi et al. [8] is discretized with a
sampling period of 0.8 seconds and piﬁitioned as
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(04355 02133 0.0531) (0.0089 0.0011 0.0001)
A,;=|0.1810 04806 02208 | A,,=|0.0541 00090 0.0011
\0.0383 0.1874 0.4814) 02209 0.0541 0.0089,
(0.0054 0.0389 0.1875) (04814 02208 0.0531)
A, =|0.0006 0.0055 00389} A,=|0.1874 04806 02133
(0.0000 0.0006 0.005%) \0.0383 0.1810 0.4355
(02872 0.0000 0.7023¢ -3 0.0157
B,;=]0.0525| B,,=|0.0002] B,=|0.0583 -3} B,=|0.1011
0.0069 0.0019 0.0041e -3 0.4698

Cu=(1 0 0), C;=(©0 0 0), C,=0 0 0) Cp,=(1 0 0)

The value of p(G) is 0.6442 which means that we can choosc € in the range:
0.6442 < & <1. The following values of € were used {0.7,0.8,0.9,1.0}.

Figures 4.3a and 4.3b show respectively plots of | P4 /1 P1r and ] Q1 /1 QI+ for dif-
ferent values of & The plots indicate a faster rate of convergence to zero for higher values

of & Figures 4.3c and 4.3d show respectively a plot of | E,(N)} APl g and
LE, (N /10l 5

All figures show that as N increases the approximation gets beter. Figure 4.3e show the
error frequency response for appreximate balanced-truncated model reduction forN=0, 1,
2 and the balanced-truncated model reduction. The error is high at low frequencies then
decreases at higher frequencies. Figure 4.3f shows the error frequency response for N =3,
4,5 and balancing. The error is very small for all three values of N. Figure 4.3g shows the
error frequency response for A2 6 and balancing, where almost there is no difference

between them.
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CHAPTER S
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this thesis, there are three main parts. The first one is producing a reduced aorder
model with poles clustered in the same region as the full order model. This method can,
also, be used for reduction of unstable systems, in this case the region should be chosen in
both left and right hand planes or in the right hand plane if the system is antistable to make
sure the poles are clustered inside it. _

In the second part, the balanced model reduction is modified using bilinear transforma-
tion to make the frequency response of the error between the full arder model and the
reduced order model low pass instead of being high pass. The reduced order model is
generically stable. This method is developed for both continnous-time and discrete-time
systerms.

Finally, approximate balanced representation and approximate balanced-truncation

model reduction have been developed. Based on the notation of &-coupling, the approxi-
mate controllability and observability gramains have been defined as power series expan-
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sions in the coupling parameter ¢, An iterative algorithm for computing them is developed
and proved. Also, conditions were given for the convergence of the approximate gramians
to the actual ones and bounds on the norms of the approximation errors are driven.

5.2 Recommendations

*  Prove that the generalized balanced model reduction produces always a reduced order
model with poles clustered in the same region as the full order model for any second
order regions.

*  Find a mathematical proof for the stability and minimality of reduced order models
produced by generalized balanced model reduction.

* Find the bound on the peak value of the error frequency response of the generalized
balanced model reduction.

* Find the bound on the peak value of the error frequency response of the balanced

model reduction using bilinear transformation that was developed in chapter 3.
*  Simplify the condition (4.36)

Generalize lemma 4.3 to include necessary and sufficient conditions.
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NOMENCLATURE
R**m.C* " space of n X m real and complex matrices.
ALA" transpose and complex conjugate transposeof the matrix A.
G.(A), 6(4) i-th and the largest singular value of A.

diag(a,,c.,...,a,) diagonal mamix whose (i,i) element is a..

A(A), A(42) eigenvalue and i-th eigenvalue.

o(4) spectrum of A. )

p(A), r(a) spectral radius and trace of A.

P,QO controllability and observability gramians.

z conurollability and observability gramians for balanced systems.
S poles clustering region.

T similarity u'ansf;c_mnation.

XN infinity norm of X(s).

I Pl ¢ Forbenius norm P.



1 |

Euclidean norm of P.

coupling parameter.

Kronecker product.
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