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CHAPTER 1
INTRODUCTION

1.1 Motivation

In this chapter a brief look at the motivation behind the research in the field of
nonlinear systems analysis and design is taken. The motivation of using neural networks
for feedback linearization is also established. Finally, the organization of the thesis is

presented.

Previously, the computational difficulty associated with nonlinear control analysis
and design has limited the application of nonlinear control methods. This is, perhaps due
to the complex behavior of nonlinear systems which can display many, often undesirable,
phenomena, such as limit cycle, finite escape time, and chaos phenomena. Besides,
nonlinear systems are described by nonlinear differential equations which cannot be
solved analytically. Also, powerful mathematical tools like Laplace and Fourier

transform do not apply to nonlinear systems.

As a result, there are no systematic tools for analyzing and designing nonlinear

control systems. In the past, feedback control systems were restricted to linear systems or



(93]

systems that can be linearized by conventional linear methods, such as the traditional
linearization process which expands the nonlinear differential state equations into a
Taylor series about an operating point. Although, linear control methods perform well
over a small range of operation, they are impractical to physical systems which are

nonlinear to some degree.

Recently, as the advent of powerful microprocessors improved our computational
ability, many researchers and designers renewed their interest in the development and
application of nonlinear control methodologies. Nowadays, tools for analyzing and
designing nonlinear control systems are available, such as the describing function
approach, the phase plane method and Lyapunov's methods, and adaptive control. Each
one of these approaches is, however, only applicable to a particular class of nonlinear

systems.

In spite of these methods that have been proposed, our understanding of the behavior
of nonlinear systems is still far from complete, and the linearization technique is still of
great interest. Unfortunately, the available methods for linearization of nonlinear systems
such as approximate linearization ,and pseudolinearization are based on approximations

of the dynamics.

Recently, the feedback linearization method has been proposed and successfully
used to control some practical problems in many areas, that include aerospace
engineering, power systems, robotics, and chemical processes. This linearization
technique has the unique feature that it is achieved by exact cancellation of the nonlinear
terms through an algebraic state transformation and feedback, rather than by
approximations. The linearization of nonlinear systems using feedback linearization
method does not, however, guarantees robustness. Consequently, if there are errors or

uncertainty in the model, the cancellation does no longer take place. In addition, this



technique performs linearization in an off-line manner, so it requires a prior knowledge of

the nonlinear system model.

In recent years, advances in the area of artificial neural networks (ANN) have
provided new insights into the control of systems with complex, unknown, and nonlinear
dynamics. The idea of using neural networks to perform feedback linearization is not
new and many authors reported works along these lines [2,12,13,14]. Their approaches,
however, are restricted to simply approximating the nonlinear terms in the dynamics by
neural networks. In this thesis, neural networks are used, for the first time as feedback
linearization controllers. The motivation behind using neural networks in this approach is
to perform feedback linearization by generating the linearizing input required for the
linearization adaptively and in an on-line manner for a large class of nonlinear systems,
not necessarily in the controllability canonical form. In essence, it is used to remove

some of the feedback linearization method drawbacks.

1.2 Organization of the Work

Chapter 2 deals with the literature review of feedback linearization. Chapter 3
provides a brief review of neural networks and their structure and how they are trained.
The basis of feedback linearization is briefly discussed in chapter 4. Chapter 5 includes
the development of feedback linearization using neural network. The simulation results

are provided in Chapter 6. Chapter 7 includes conclusion as well as suggestion for future

work.



CHAPTER 2

LITERATURE SURVEY

A survey of the literature on feedback linearization is provided in this chapter. Also,
we look at the recent trends in the utilization of neural networks for the purpose of

nonlinear control.

Feedback linearization was implicitly or explicitly discussed in several papers

dealing with the study of noninteracting control of nonlinear systems [37,41].

In [1], Krener solved the problem in which nonlinear systems can be transformed
into linear systems, using only a change of variables. Brockett [43], gave sufficient
conditions for a real nonlinear system with an equilibrium point at the origin to be locally
equivalent to a linear system in integrator form, using change of coordinates and
feedback. Starting with the work of Brockett, several authors studied the problem of
when a differential equation relating the input to the state can be linearized via state
feedback and coordinate transformation. The problem was completely solved by
Jackubczyk and Respondek in [4]. Also, independently, it was solved by Hunt, Su, and
Meyer in [35], where necessary and sufficient conditions for the existence of a local

transformation which carries a nonlinear system to a linear system in the controllability



canonical form are given. The transformation is based on both feedback and change of
coordinates and it is more generai ihan those found in [43]. A global transformation in

the whole state space procedure is developed in [27].

Nowadays, there are different transformation methods available for nonlinear
systems [39]. These transformation schemes are basically used to transform nonlinear
systems into the controllability canonical form. Recently, a transformation into
generalized controller canonical forms for nonlinear dynamics is proposed in[30]. Under
such transformation, all nonlinear dynamics can be exactly linearized via dynamic

feedback.

The theory of feedback linearization is now well developed and understood [49].
Also, Slotine [19] has given a complete discussion of this theory and its drawbacks for
single input and single output (SISO) nonlinear systems , and for multi input-multi
output (MIMO) nonlinear systems. Conditions under which nonlinear systems can be

linearized have also been discussed.

Feedback linearization has been successfully used in a number of practical
applications. These include: robot manipulators [44], acrospace systems [45], chemical

processes [46], power systems [38], and DC motors{17,33].

An excellent survey of feedback linearization and other linearization methods for

nonlinear systems, and also the future areas for research have been given in[11].

The utilization of neural networks in the field of control systems is expanding
rapidly. There are a significant research effort in this direction. This can be inferred
from the growth of papers, journals, conferences, and conference sessions devoted to the
topic of Artificial Neural Networks (ANN), and their application just in the control

systems area.



The basic ideas and techniques of Artificial Neural Networks are well explained in

[3,5,9,16,36].

In the literature on neural network architectures for control, a large number of control
structures have been proposed and used with the backpropagation algorithm as its
learning rule. In [3,10,36], training algorithms for dynamics plants with applications to
controlling different nonlinear systems are described. In [10], three learning architectures
are proposed for training the neural controller to provide the desired inputs to the plant so
that a desired response is obtained. Also, a modified backpropagation algorithm based on
propagation of the output error through the plant is introduced. This proposed method
avoids the training stage, and the network learns continuously and is therefore adaptive.
However, the evaluation of the output error requires a prior knowledge of the plant.
Psaltis et al. [10], consider that the plant can be thought of as unmodifiable additional

layer of the neural controller.

Recently, Narrendra et al. [24] have shown by simulations that a neural network can
be used effectively for the identification and control of nonlinear dynamic systems
depending on several assumptions regarding the input-output behavior of the plant ( e.g.
complete controllability and observability are assumed). The results are based on the

universal approximation properties of multilayer neural networks provided in [21].

In [42], a modified backpropagation algorithm through the plant is proposed. Yet,
the modification is based on emulating the unknown plant. In [31], a neural controller
based on backpropagation algorithm is proposed. Although, the weights are adapted
directly in terms of the output of the plant, the partial derivatives which are unknown are

approximated by their sign.



The idea of applying neural network to control nonlinear feedback linearizable
systems appeared in [12,13,14,15], however, the proposed approaches are based only on

using the neural network to approximate the nonlinear terms.

An excellent survey of the importance of neural networks from a control systems
perspective and also the future areas for research have been given in[22]. The main focus
is on the promise of Artificial Neural Networks in the realm of modeling, identification,

and control of nonlinear systems.

In [2], Levin and Narrendra suggested a method of using neural network for feedback
linearization. Three different multilayer neural networks with different learning
algorithms are used to approximate the nonlinear functions, the state transformations, and
the linearizing input. In this approach, the plant's dynamics are approximated using an
identification method which uses a neural network with a static backpropagation
algorithm. After that, two distinct neural networks are trained simultaneously to
approximate the transformation and the nonlinear feedback controller using a static and a
dynamic backpropagation algorithm, respectively. Also, the weights are adjusted over k-
steps. As given in [2], the overall block diagram for feedback linearization using neural

networks is illustrated in fig 2.1.

xni(k - l) TOL [*
4
NN1/ - NN © > NNz/ 2;(k)
7 u(k) ) /e(k) )
g/ TS ()
b vk - 6
A - zi(k_l)

Figure 2.1 Architecture for feedback linearization



An essential first step in this method is to emulate the nonlinear plant, whether its

dynamics are known or unknown. The architecture for emulating the plant is shown in

fig. 2.2
u—(k) - y pi(k + 1)
|_> plant
|TDL —
) e %
Joi(k +1)
e NN/
ve e,(k+1)

Figure 2.2 Architecture for estimation of the plant

After the emulation step, NN1 and NN2 in fig. 2.1 are trained simultaneously. The
weights of NN2 are adjusted using a static backpropagation algorithm, while the weights
of NNI1 are adjusted by a dynamic backpropagation scheme. The dynamic
backpropagation algorithm used to update the weights of NN1 in fig. 2.1 is derived as
follows:

If the instantaneous error e(k) in fig. 2.1 is given by:

e(k)=z(k)- 2(k)
where z and Z are the desired output and the neural network output respectively, also
yand ¥ in fig. 2.2 represent the desired output and the approximated one respectively.

The performance criterion over an interval can be characterized by
2
E = Zfell)- 2(K)f" = Xfe(c)

Calculating the gradients of the performance criterion with respect to the weights of NN2

is derived as follows:

& 23 pw- 2] %‘9
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and

da(k) _ - 2(k) dx;(k)
dw "%axj(k) dw

dx; (k)
where j represents the overall neurons in the layer. The last derivative is given
W
by:
a0 0500 dn(e-1) oK)
dw  Fox(k-1) dw dw

where we W(NN2), and | is the overall neurons in the previous layer.

However, the above dynamic backpropagation is computationally not efficient. In
this thesis, a simpler computationally efficient method is proposed. In this work, we only
use one neural network which serves as a direct adaptive feedback linearization
controller, and the weights are adjusted at each instant of time rather than over k-steps
using a static backpropagation algorithm. This proposed scheme is performed on-line
and with no training stage. Although, the backpropagation through the plant algorithm is
used, the unknown partial derivative is approximated by its real value instead of
approximating the unknown partial derivative by its sign. The idea of using the neural
network as a direct adaptive feedback linearization controller is not found in published

papers.

The issue of utilizing neural network in control systems continues to be a hot topic of
research these days as witnessed in part by recent special issues on the subject IEEE

control system magazine [9].



CHAPTER 3

NEURAL NETWORKS

In this chapter the fundamentals of neural networks are described. The architecture
of the multilayered neural networks is also included. A modified backpropagation

algorithm is discussed at the end of this chapter.

Neural networks are computational systems, either hardware or software, which
mimic the computational abilities of biological systems by using a large number of
simple interconnected artificial neurons. Artificial neurons are simple emulation of
biological neurons; they take in information from sensors or other artificial neurons,
perform simple operations on this data and pass the results on to other neurons. Neural
networks can be described as an attempt to achieve human-like performance. It would
be more suitable to describe it as an attempt to mimic the way the brain does things. In
this respect, the neural network structure is based on our current understanding of the

biological nervous system.



3.1 Artificial Neuron

The fundamental cell of an artificial neural network is the artificial neuron. The
structure of single neuron is shown in figure 3.1. A set of inputs are applied to the neuron
over weighted links. The neuron performs a simple operation on the received data. First,
it sums up ali the weighted inputs and then passes the results through a nonlinear function
H. The output of the ith neuron can be expressed as

n
Yi =H(Zwijxj) 3.1
j=0
Where n is the total number of inputs.

The function H is called the neuron activation function, which could have different

forms such as the hard limiter, the threshold logic function, and the nonlinear sigmoid

function. The most often used activation function is the nonlinear sigmoid function

usually taken to be:
|
H(x)= —— 3.2
l+e
but, we will use the tangential sigmoid function in this thesis, usually taken as:
1 _ e—2x
H(x)= ——:; 3.3
l+e

One of the advantages of the tangential sigmoid function is that it has a simple

derivative:

H'(x)= (l— Hz(x)) 3.4



Vi

Figure 3.1 Structure of artificial neuron

Regardless the variety of neural network models, all are based on the artificial neuron

configuration. There are six basic typologies of neural networks. These are :

1. Multilayred feedforword networks.

2. Single layer, laterally connected.

3. Single layer, topologically ordered

4. Bilayer, feedforward/feedback networks.
5. Multilayer cooperative network

6. Hybrid network

In this thesis, we will adopt the multilayered feedforward neural network which will

be introduced in the following section.

3.2 Multilayer Neural Network (MNN)

The multilayer neural networks (mnn) are feedforward networks with one or more

layers between the input and output layers. Neurons in each layer are fully connected to
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only the neurons in the next layer. Because of the great capabilities offered by the

multilayer neural network, they overcome many of the single layer limitations.

The capabilities of multilayer neural network are enhanced by the nonlinearities
used. Nonlinearities must be present, because without it the multilayer would implement
nothing more a linear transformation in which case the multilayer neural network could

be reduced to an equivalent single layer network.

In practice, the multilayer neural networks have been successfully used in many
different areas. Multilayer networks have good potential for control applications,
because they have the ability to learn and can approximate a wide range of nonlinear

functions to any desired degree of accuracy.

A neural network consists of a set of interconnected neurons. In multilayer
feedforward neural network, neurons are organized in layers s=0,1...S and a neuron in
layer s receives its inputs only from neurons in the s-1 layer. A typical multilayer neural
network with an input layer, an output layer and one hidden layer is shown in figure 3.2,
and with two hidden layers in fig. 3.3. In common practice, the input layer is referred to
as the zeroth input layer, i.e. s=0 is the input layer, and to the s=S layer as the output layer

and all others as hidden layers.
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Figure 3.2 Structure of Multilayer Figure 3.3 Structure of Multilayer

with one hidden layer with two hidden layers

The structure of single neuron in both the hidden and the output layers is illustrated in fig.

3.4. The output of the i-th neuron in layer s is given by [9]:

n

Y= H(ZWEX?"J 35
=0

where Wisj is the weight connecting the i-th neuron at the s-th layer to the previous

layer’s neuron j. The biases Wiso are treated as additional weight from a neuron with

output always at one. In this work, the output of the neuron at the output layer is chosen

to be linear, that is:

S _
Y =Zwijxj 3.6
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Figure 3.4 Structure of single neuron

It was proved in [21] that the multilayer neural network with one hidden layer
contains large number of neurons can approximate any continuous nonlinear function to
the desired degree of accuracy. In control system, a neural network is used to
approximate a continuous nonlinear function as shown in fig. 3.5. Here, the weights of
the neural network will be adjusted such that the output of NN matches the desired
output. If the nonlinear function is known, then a neural network NN can be trained off-
line. When the function to be approximated is unknown, a neural network NN has to be

trained on-line using the input-output pairs.
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4

neural output
NN
input / .

+

Y

»| nonlinear
function desired output

Figure 3.5 Architecture for approximation of nonlinear function

In the following section, we will explain how to adjust the weights of the neural network,

so the backpropagation training algorithm will be introduced.
3.3 Backpropagation Training Algorithm (BEP)

Much of the present interest in neural networks has to do with their ability to learn.
The most commonly used learning algorithm in neural networks is based on error
backpropagation used for adjusting the interconnection weights between layers. The
multilayer neural network is trained to map the input sets into points in the range
corresponding to output classes. The backpropagation algorithm is a gradient descent
technique. It is used mainly to find the network weights that minimize a criterion
function. The criterion function to be minimized is the sum of the squared error between
the desired output and the network actual output. That is to say, the backpropagation
scheme adjusts the weights of the network in the direction opposite to the instantaneous
error gradient defined as [3]:

_&
ow

\% 3.7

The sum squared error E, is the criterion function to be minimized. It is defined as

the sum of the square of the errors at each neuron at the output layer, where the output
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error is the difference between the desired and the actual responses. The output error can

be expressed in general as:
€ =Ymi ~ Vi 3.8

Where y.; stands for the desired response of the neuron i, and y; is the actual output of

the same element. Also, the instantaneous sum squared error for the s-th layer is given

by:
1%,
E = — Z ei 3.9
25
Where n is the total number of neurons in the s-th layer.

Implementation of the backpropagation algorithm starts by presenting an input
pattern vector X to the input layer of the network with the initial weight values set to
small random numbers. the input pattern is propagated through the network to generate
an output vector Y. See fig. 3.6 which zooms on the i-th neuron‘ of a multilayer neural

network.

layer(s-1) layer s

Figure 3.6. A network example to derive BEP



we have,

n

y; =H(X; )= H(Z w;xj“) 3.10
=

where the W% are the weights connecting neuron i to the previous layer's neuron j, and

xj"l are the output of the previous layer.

If layer s is the output layer, ththe criterion function to be minimized in this example is

thglobal error given by the following relation:

1
E='2‘Zi:(ymi “Y?)2 311
where y_. is the desired output of neuron i and yis is the actual output of the same

element at layes s. This error well be minimized by the steepest descent scheme in order

to adjust the weights by the following relation;

wi(k+1)=wi (k)7 aafs 312
ij
where 7 is the convergence rate. The partial derivative in the above equation is given by:
E _E X s
owi, OX; ow

then the local error for an output node is given by;

s JE 0E 0dy; s \er 1~ S
€i =_5X§ =‘ay? a)y(: =(ymi - Yi)H (Xi)3-14

and,

- |

oxX:
iy 3.15
ow;;

Therefore, the weights are adapted by the following relation:
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wi(k+1)=wj(k)+neix;" 3.16

However, if Layer s is a hidden layer, then the local error is determined entirely by

the local error at the next layer and is given by the following relation;

s_ OE O oy

i T T s s S 3.17
0X; oy; 0X;
In this case,
oE ) 0E OX;!
Taes sl ls et o y 318
dy;  \OXi" Oy 0X;"  Oy;
oE s+l s+l
———=)e} Wi 3.19
oy; k '
where k is the overall nodes in the above layer.
Therefore, the local error at the hidden layer is given by:
ef =H'(X Peiwit! 3.20
k

Finally, the weights are adapted by using the law given by equation 3.16
wi(k+1)= wi(k)+neixS”
with the local error given by equations 3.14 and 3.20 for an output node and hidden node

respectively [3,36].

The conventional backpropagation algorithm mentioned above cannot be used in the
case when the plant lies between the neural network and its error signal as shown in

figure 3.7.



21

3

u v
NN / plant

> LRM

Figure 3.7 Structure of BP through a plant

In this case the backpropagation algorithm has to be modified to adjust the weights by
back propagating the output error through the plant to the network. The connecting

weights of the network are adjusted by:

CE
wyk+1)=wy(k)-n_— 321
ow;
Using the chain rule:
0E OE ou
—_ 3.22
aWij au aWU
Since the output layer is chosen to be linear with single neuron in this work, then we have
u=zwliypi 3.23
1
therefore,
N -
ow,; “Pou '

E
Now the term —5‘-1— is to be calculated

CE OE aym aypi
— = F - -y 3.25
qu By, ou Cus =90 )5,
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Where y,; stands for the i-th desired response and y ; is the i-th plant output as shown

in fig. 3.7, and i=1,2,..n, where n is the number of the states.

The partial derivative pi is not known, in [10], Psaltis et al. suggested that this

approximate derivative can be determined either by changing each input to the plant
slightly at the operating point and measuring the change at the output, or by comparing
changes with previous iterations. In our approach an approximation for the partial
derivative will be used to implement the backpropagation algorithm. Our approximation
for the unknown partial derivative can be expressed as:

0y yi _ ypi(k'*‘ 1)‘ Ypi (k)
du u(k +1)-u(k)

3.26

This approximation will be determined at each instant of time to calculate the output
error which will be propagated backward to the network so that the weights of the neural
network can be adjusted, rather than comparing changes with previous iteration or

changing the input slightly at the operating point and measuring the change at the output.

Finally, using the partial derivative approximation, we can adjust the weights using

the relation given by equation 3.16:
wii(k+1)=wj(k)+nex;
For an output node the error €; for this type of architecture is given by:

€ = f’(yo Xymi - Ypi)a;u_pi 3.27

and for a hidden node it is given as:

e, = f’(yh)Zk:ekwjk 3.28



23

The method mentioned above has some advantages: capability to handle system
uncertainties, simple architecture and learning ability. However, the main problem of this
method is that the neural network control system usually have more than one equilibrium
point. This means that system is easy to get stuck at local minima. Besides, the neural

network will stop learning when the approximate partial derivative is equal to zero.

In the rest of this section we would like to place down some alternative solution to
the problem mentioned above. Since the error signal at the output of the neural network
is not available, then using the adaptive control with indirect learning scheme might solve
the problem. In this method, the desired output of the LRM are fed to the inputs of the
neural network NN as shown in fig. 3.8, then the network will produce an input signal to
drive the plant. After that, feeding the actual output of the plant measured during the
control process, to the neural network NN1, the network learns the inverse dynamics of
the unknown plant and generates an estimation for the required input in order to achieve
the actual plant output. The weights of the network are adjusted by propagating the
difference between the actual and the estimated input signals using the conventional
backpropagation algorithm. Therefore, the problem of approximating the output error to

be propagated through the plant will be removed in such method.

Vad

Ymi u y[ni
—® NN (*\' =1 plant -
1]
u NN

Figure 3.8 An alternative solution using NN to learn the inverse dynamic

P

As an alternative solution, also we suggest using the indirect adaptive control method

which is based on the identification of the plant as shown in fig. 3.9 [24]. Instead of
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backpropagating the error through the plant, here the error will be propagated backward
through the neural network used to identify the system. The error between the estimated
output and the actual ones is used to adjust the weights of the neural network NN1, while
the error e_, is used to adjust the weights of the neural network NN by propagating it
through NN1.

Fig.3.9.An alternative solution using indirect adaptive control method

3.4 Training the Network

The goal of training the network is to adjust the weights so that the desired response
is achieved. Usually a neural network is trained over a number of training pairs. Before
starting the training process, it is required to initialize all weights to a small random
numbers. As mentioned in the previous section, backpropagation starts by presenting an
input pattern vector to the input layer of the neural network, propagating forward through
the network to generate an output response, and computing the error at each output.
Then the errors are propagated backward through the network to associate a square error
derivative with each gradient of each derivative. Finally the weights are adjusted based
upon the corresponding gradient, producing a new pattern and the process is repeated
until the target is achieved. This scheme will not work properly if the initial weights are

poorly chosen. The following steps summarize the backpropagation method [36].
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1. Present a continuous valued input vector X, X;,...,X,_; and specify the target output
Yo>Y1>++>Ym-1- The input could be new on each trial or samples from a training set
presented cyclically.

2. Calculate the actual network output.

3. Calculate the error between the desired and actual outputs.

4. Adjust the weights using a recursive algorithm starting at the output layer and working
backward to the first hidden layer. Adapt weights using equation 3.13 with the error
given in equation 3.22 as the error at the output layer, and equation 3.23 as the error in
the hidden layer with the approximation of the unknown partial derivative given by
equation 3.21.

5. Repeat step 1 through 4 until the goal is reached.

The backpropagation algorithm is by no means perfect and suffers from the slow
convergence problem. In order to speed up the convergence rate, there are many trends in
the area of modification of back propagation algorithm. The conjugate gradient method
[23], the Newton method, Davidon algorithm [7], the SL-CONE method [29], and the
backpropagation algorithm with the momentum term [36], are just a few examples of the
proposed methods uto speed up the convergence rate of the conventional backpropagation
algorithm. In this thesis, the backpropagation alwith a momentum term will be used in
order to speed up the convergence rate. So, a momentum term of the form

o (W i (k ) - Wy (k - 1)) will be added to equation 3.16 such that the weights will

be adjusted by the following relation [36]:
wi(k +1)= wi(k)+neix;” +0t(W?j(k)—w§j(k—1)) 3.29

where O<a<l1.



CHAPTER 4

FEEDBACK LINEARIZATION

The input-state feedback linearization principle is described in this chapter.
Feedback linearization is an approach to nonlinear control design. The basic idea of this
method is to algebraically transform nonlinear system dynamics into a linear one, so that
linear control design techniques can be applied. More precisely, feedback linearization
amounts to canceling the nonlinearities in a nonlinear system, so that the closed loop
dynamics are in a linear form. This method differs from the other tools in that it is

achieved by exact state transformation and feedback.

There are two forms of feedback linearization input-state and input-output
linearization.  Input-state linearization is achieved by transforming the system's
differential equation into the controllability canonical form. Once this is done a
linearizing control can easily be designed. The input-output linearization relies on
differentiating the output of interest until the input is related to the derivative of the

output. This thesis is initially concerned with only the input-state feedback linearization.

A system is said to be in a controllable canonical form if its dynamics are given by

[47]:



d"x
— = f(X)+g(X)u 4.1
dt
where u is the scalar control input, and X € R" is the state vector:
dx d"'x]|
X= —_— . : 42
dt dt™”

and n is the number of states, and the prime sign stands for transpose. In state space

representation this can be written in the following form:

dx
a2
4.3
i .
2 L = f(X)+g(X)u
t
In a matrix representation, this can be written as:
x, 1 [ X, i
i = 4.4
dt| . .
x| LE(X)+g(Xu,

In the following section important mathematical tools are introduced.

4.1 Mathematical Tools

The objective of this section is to introduce some mathematical results from
differential geometry on which feedback linearization is based. As givenin [19] a scalar
function h:R" — R, is said to be smooth if it has continuous partial derivatives of any
order. Also, a vector function f:R" — R" defined as a vector field in R" is said to be

a smooth vector field if it has continuous partial derivatives of any order. The gradient of
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ch
a smooth scalar function h(x) is defined as the row vector of dimension n,Vh = —
whose elements are:
ch
(Vh), =— 45
0x;

Similarly, given a smooth vector field f(x), the Jacobian of f is denoted by Vf and

of
defined by the n X n matrix Vf = — whose elements are:

of;
(Vf)l.l = & 4.6

J
Lie Derivatives And Lie Brackets

For a smooth scalar function h and a smooth vector field fon R", the Lie derivative

of h with respect to fis another scalar function defined by [19]:

Lch=Vh-f 47

Which is the directional derivative of h along the direction of the vector field f. Also, a

recursive definition can be assigned to higher order Lie derivatives as follows:
Lith=h 4.8
Lth=L(L7'h) fori=12,.n 49
Similarly, for a two smooth vector field fand g on R", the Lie bracket of f and g is
a third vector field on R" and is defined by:

ad;g=[f,g]=Vg-f-Vf-g 4.10
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where ad. stands for adjoint. Also, repeated Lie brackets can be defined recursively by:

adlg=g 4.11

adifg = [f,ad if"g] for i=1,2,..n 4.12

A linearly independent set of vector fields {fl,fz TS fm} on R" is said to be
solvable or completely integrable if and only if there exist n-m scalar functions

h, (x) ~hp (x) satisfying the following m(n-m) partial differential equations:

Vh,f; =0 413

where 1<i<n-m,and 1< j<m, and n is the dimension of the space and m is the

number of vector fields.
Involutivity And Frobenious Theorem

The concept of involutivity will now be defined. As in[19], a linearly independent

set of vector fields {fl S SRS } , is said to be involutive if the Lie bracket of any pairs

of vector fields from this set results in a linear combination of the set's vector field. In
other words, a linearly independent set of vector fields {fl,fz o -,fm} is said to be

involutive if and only if there are scalar functions o ik (x) such that
m
[fi,fj ]= kZlocijk(x)fk(x) Vij 14

Another important concept is the Frobenious theorem which provides a necessary

and sufficient conditions for the solvability of a special class of partial differential

equations. This theorem states that the set of vector fields 3f;,f j} is solvable

(completely integrable) if and only if it is involutive. That is to say, complete

integrability is equivalent to involutivity.
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Diffeomorphism

A difeomorphism can transform a nonlinear system into another equivalent nonlinear

system, but in a simpler form. A nonlinear function T(X) on R", defined in a region Q

where Qc R"— R", is said to be a local difeomorphism if and only if the following

conditions are satisfied:

(i) The diffeomorphism T(X) must be smooth, and

(ii) The Jacobian matrix VT(X) must be nonsingular at a given point in the region Q.

In the case that Q= R", then the diffeomorphism is said to be global [19].

Based on the above mathematical preliminaries, the input-state feedback linearization

will be discussed in the following section.

4.2 Input-State Feedback Linearization

The input-state feedback linearization is achieved by a combination of a state
transformation and an input feedback. It relies on transforming the system's differential
equations into the controllable canonical form and then introducing a linearizing
feedback. So, a single input nonlinear system in the form of the following differential

equations:

X = f(X)+g(X)u 4.15

with Xe R" being the state vector given by eqn. (4.2):

n-1 '
x| & . 47X
dt dt™!
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and f(X) and g(X) being smooth vector fields on R" is said to be input-state linearizable
if there exist a region Q in R",a diffeomorphism T: Q— R", and a nonlinear feedback

control law
u=o(X)+p(X)v 4.16

such that the new state vector Z= T(X) and the new input v satisfy a linear time invariant

relation

Z=AZ+bv 4.17

where A and b are in the controllable canonical form, that is

0 1 0 0] 0]
0 01 0 0

A=~ 07 ,b=0 4.18
oo . . . .1 .
000000 O 1

It was shown in [19], that the nonlinear system given in (4.15) is input-state

feedback linearizable if and only if the following conditions hold:

(i) The set of vector fields g,adfg,....,ad¥_1 g, are linearly independent in Q.

Checking this condition amounts to check:

rank[g,ad,g,....,ad " 'g]=n 4.19
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This condition simply represents the controllability condition of the nonlinear system in
(4.15). The independence of the set of vector fields is equivalent to the invertibility of the

linear controllability matrix:

[b,Ab,...,A(“")b] 420
(ii) The set of vector fields [ g,ad;g,....,ad ;f]-z g] are involutive in Q.

If the above two conditions hold, then there exist a nonsingular state transformation

T(X)Q — R" thtransforms the nonlinear system into the controllability canonical

form, and a nonlinear feedback control law u which cancels the nonlinear terms in the n-

th partial differential equation.

Now, the objective is to investigate the input-state linearization. If there exist a

nonsingular state transformation
[T,(X)]
z=T(X)=| 4.21

1)

and a nonlinear feedback control
u=a(X)+B(X)v 4.22

such that

Z= agg()x = agg()(f(xﬁ g(X)j xe1-iz) = AZ+bv 423

Expanding the above equation (4.23) yields to [27]:



LT+ LT u=T,
LT, +L,Tiu=v

4.4

Since T(X) is independent of u, then the above equation (4.24) holds if and only if the

following partial differential equations are satisfied:
Lng = LgTz =eee= Lng_‘ =0

LT, =7T,..L;T_, =T,
Lng #0
which are equivalent to
LLT=0 i=01,2.,7n-2
L, LY =0
Then, the new state transformation is given by
TX)=[T, LT, . . L' ]
and the nonlinear feedback control is given by :
u=a(X)+p(X)v
where v is the new input, and

LT'T,
“X)= L
g

4.25

4.26

4.27

4.28

4.29

4.30

431

432



34

and

1
X)= ———— 433
BX) LgL"f"T,

Using the state transformation given by eqn.(4.30) and the input feedback given by the
relation in (4.31), the nonlinear system in (4.15):
X = £(X)+ g(X)u

will be transformed into a linear time-invariant of the form given by eqn.(4.17):

Z=AZ+bv

Clearly, the input-state feedback linearization method solves the problem of
designing the control input u in order to cancel the nonlinear terms into three steps. First,
the nonlinear dynamics is transformed into the controllable canonical form by finding a
state transformation T(X). Then, a linearizing input is found in order to transform the
nonlinear system into a linear one. Finally, standard linear control design technique such

as pole-placement is applied.

Based on the above discussion, the input-state feedback linearization technique can
be performed through the following steps:
1. Construct the vector fields g,adg,....,ad}['g for the given system.
2. Check both the controllability, and involutivity conditions.
3. If both conditions are satisfied, solve the equations given by (4.28) and (4.29) to find
the first state T;(X)
4. Calculate the new state transformation given by

TX)=1 LT . . L'}"T,j

5. Calculate the input transformation required for canceling the nonlinearity given by;

LLT'T,
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6. Use a linear control method such as pole placement to design v (This will be explained

in the next chapter).

It is clear that the first essential step in input-state feedback linearization is to find a
state transformation. Although, it is not an easy task to find such transformation, there
are different methods proposed to solve this problem. In the following section, we will

discuss some of them.

4.3 State Transformation
In this section different state transformation methods are introduced for different
class of nonlinear systems.
4.3.1 Method 1
This method is proposed by Sommer (1980) [34]. It works for a class of
nonlinear systems described by the following dynamics:

X=f(X)+g(Xu 434
with f(X) and g(X) being two smooth vector fields on R". The objective is simply
to find a state transformation

Z=T(X)}R" > R" 435

which transform the nonlinear system given in (4.34) into the global nonlinear controller

canonical form [39]:

Z 1 z, 1 0]
Z, Z3 0
Z =| - |= . +! - u 4.36
|z, | (f@)] 1]
Differentiating eqn. 4.35 with respect to time gives:
. OI(X).
7 = L) X 437

oX
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from eqn. 4.33
oT(X)
Z=——(f(X X 4.38
o {0+ (X))

comparing 4.38 with 4.36 yield:

iré—‘)-(}?—)(f(x))= T, i=12..,n-1 4.39
and

a'r(x) g(X)=0 i=1,2,..,n-1 4.40

61“ (X) g(X)=1 4.41
eqns. 4.39-4.41 can be written equivalently as:

LT, =T,, 4.42

Lng = LgTz ==L, T ,= 0 4.43

LT, =1 4.44
writing 4.43 and 4.44 in a matrix form gives:

Lz - - Lgzaw LezJ=[0 - - 0 1] 4.45
Also, from 4.42

Z= [z, Liz, - - L'}"z,] 4.46

If the matrix on the left hand side of eqn 4.45 is denoted by { and is nonsingular, then the

last row of g“ ,Jrepresented by 9,satisfies the following equation:

se=f - - 0 1] 4.47
Thus, to solve for T it is required that the following condition is satisfied:
oT,(x
x) =9 448
ox

If, on the other hand, eqn. 4.48 is not satisfied, then it can be made exact by using an

integrating factor.



4.3.2 Method 2
This method works with nonlinear systems in the form given by the following
equation [39]:
X, = fi(xl,xz,...,xm) i=12,..,n-1 4.49
X, = £, (X, X500, Xp, 1)
using the following state transformation:
X
fi(Xp0 X, )

d
— (x50 X,
T(x)=| dt : l ) 4.50

d n-2

-d—t;l—_—z-fl(x,,..,xn)

will transform the original system into the controllability canonical form. Once this is

done, the linearizing input is easily introduced as mentioned in the previous section.

4.3.3 Method 3

This method proposed in{35] works with nonlinear systems of the form given by
4.35:
K= £(X)+g(X)u
with f (X) and g(X) are two smooth vector fields on R". In [35], it was shown that

the existence of a local state transformation T = ('I'I,TZ,...,Tn +1) under the

controllability and the involutivity conditions must satisfy the following partial
differential equations:
Lng = LgTz =-.e= Lng_| =0 4.51
L, T.=T, i=12,.,n-1 4.52
LivgTo =Ton 4.53
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One should note that T;,T,,..., T, are functions of X;,X,,...,X, onlyand T, isa
function of X;,X;,...,X, and u, if T, is known, then T,,T;,...,T,,, can be found by

solving the following partial differential equations:
Lad“ng =0 k=0,,...,n-2 4.54
f

L, Ty #0 455

In general, it is difficult to solve eqns. 4.54 and 4.55. In [27], a solution to such problem
is suggested. It was shown that these equations can be solved by introducing the
parameters S,t;,...,t _, as follows:

First: solve for all s €R the system

dx_ ad}’'g 4.56
ds

with initial conditions x(O) =0

Next: solve forall t;, €R the system

dx
=2 —ad™? 4.57
dt, f &

with initial conditions X(5,0)= x(s)
This procedure is repeated until the last step being to solve for all t,_; €R the system

dx
dt n-1

=g 4.58

with initial conditions X(8,t,...,t, »,0)=X(S,t},..,t, )

The problem of solving the partial differential equations in 4.54 and 4.55 is solved once

the parameterss, t,,...,t _; are found as functions of X,,X,,...,X, which depends on

the following Jacobian matrix being nonsingular:
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— -

o o 0%
aS atl atn—l
4.59
ax“ ax“ . - - ax“
Las ot, atn_,_

The above three methods are equivalent. Also, the existence of such transformation
is restricted by satisfying the controllability and involutivity conditions.
4.3.4 Method 4
Although the above mentioned methods are applied to static feedback
linearization, a generalized controller canonical form for nonlinear dynamics is
introduced briefly in this section . This method is proposed by Fliess in [30]. It works
for nonlinear dynamics of the form:
X = F(X,u) 4.60
where F is a function of the components of both X and u. It was shown that there exist a

set of state variables 1 = (T]l,...,nn) such that, in these variables, the equations in

(4.60) assume the following generalized controller canonical form:

N, = M,
Ny, = N3

461
1;ln—l = T]n

N, = c(n,u,ﬁ,...,u(“))

where the state transformation from X to 1 involves the control variables and a finite

number of their derivatives

n, = 'ci(x,u,ﬁ,...,u(“)) i=12,..,n 4.62
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where ¢ and T;’s are algebraic functions of their arguments, and may not be defined
everywhere, and a is the derivative order.

As mentioned in [30], under such transformation, all nonlinear dynamics can be exactly
linearized via a dynamic feedback.

In [2], Levin and Narrendra have shown that there exist a nonlinear transformation
that transforms any nonlinear systems into the controllable canonical form provided that
they are feedback linearizable.

In this thesis, the proposed scheme is mainly constructed to perform the input-state
feedback linearization method based on the idea of the first three state transformation
methods. That is to say, no dynamic feedback is used, and this can be considered as a
future work to construct the proposed neural network such that any nonlinear system can

be linearized via a dynamic feedback.

4.3 Limitations of Feedback Linearization

The feedback linearization based on transforming nonlinear systems into a linear one
by using state feedback has been successfully applied to a number of practical control
problems. It has been used as a controller design tool. However, this method has a
number of important limitations:

1. It is only applied for feedback linearizable nonlinear systems: Systems which satisfy
the controllability and involutivity conditions. It cannot be applied to non feedback
linearizable systems.

2. It is an off-line method.

3. Input-state feedback linearization is not valid in the whole space, it is only locally
feedback linearizable.

4. Exact dynamics of the nonlinear plant must be known.
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5. The partial differential equations defining input-state transformation are solved
analytically which is not systematic.
6. The full state has to be measured.
7. In the presence of model uncertainties, cancellation of the nonlinearities does no longer

take place.



CHAPTER 5
FEEDBACK LINEARIZATION
USING NEURAL NETWORKS

5.1 Motivation

The motivation for the use of neural networks in feedback linearization is provided in

this chapter. The proposed diagram schemes are also provided.

A common problem in control is to provide the correct input to drive a possibly
nonlinear plant from an initial state to a desired state. The typical approach used in
solving such a problem involves linearizing the plant around a number of operating
points, introducing linear state-space models of the plant at the operating points, and
designing a controller based on the linear control methods. This approach is only valid
over a small range of operation. For realistic systems it is usually computationally

involved and requires considerable design efforts.

The feedback linearization method is another way of solving such a problem.
Although, it is valid over a range greater than that realized by conventional linearization

techniques, it is not valid over the whole space. The feedback linearization as mentioned
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in chapter 4 is an algebraic off-line technique. The method has,also, a number of
important limitations; It is only applicable to a certain class of nonlinear systems which
satisfy the controllability and involutivity conditions; Systems which are called feedback
linearizable. Nonlinear systems which are non feedback linearizable cannot be handled
by this method. In addition, the full states have to be available for measurement. Also,
no robustness is guaranteed in the presence of parameter uncertainty or unmodeleled
dynamics. This means that feedback linearization is sensitive to modeling errors and
parameter variations. Besides, the exact dynamics of the nonlinear systems must be
precisely known. The method is not systematic, because the nonlinear transformations
and the nonlinear feedback need to be solved analytically depending on the exact

dynamics of the nonlinear systems.

The objective of this work is to propose a neural network structure that serves as a
direct adaptive feedback linearization controller. The proposed architecture is used to
remove some of the feedback linearization method drawbacks. It is used to generate the
required input signal that drives the nonlinear systems from its initial states to the desired
linear states. That is to say, the proposed controller provides the desired linearizing input
signal required to transform the nonlinear system into a linear time-invariant system. The
proposed controller will perform input-state feedback linearization adaptively and in an
on-line manner. Also, it is applied to unknown nonlinear systems using the measured
data obtained during the process of the plant, and ,therefore, exact dynamics are no longer
needed. In addition, the proposed neural network controller can handle nonlinear systems
which are in the controllability canonical form and those which are not in the
controllability canonical form. Thus, it avoids the analytical calculations of the state
transformations and the uonlinear feedback controller, though this method is systematic.

In the following section basic concepts and definitions in control theory are introduced.



44

5.2 Basic Concepts And Definitions

In this section, many concepts and definitions from system theory perspectives will
be discussed.
Definition 1:(Autonomous and Non-Autonomous Systems)  Autonomous systems are
those which do not depend explicitly on time (i.e. time invariant nonlinear systems).

Otherwise, the system is called non-autonomous [49].

Definition 2:(Equilibrium Point) A point X = X" is an equilibrium point if it has the
property that if the state of the system reaches this point, then it will remain there forever
[19]. It was shown that an equilibrium point is asymptotically stable, if the Jacobian
linearization of the original nonlinear system at the equilibrium point is stable. Also, the
equilibrium point is unstable, if the linear approximation of the original nonlinear system

is unstable[19].

Definition 3:(Controllability) The controllability of a dynamical system implies the
ability to transfer the system from any initial state to a desired state in finite time by using

a suitable input signal. From linear control theory, a dynamical system is said to be

controllable at t,, if there exist a finite time t, > t, such that for any X, at t,and X,

in the state space vector, there exists an inputu[to uJ that will transform the state X, to

the state X; at time t;. Otherwise, the dynamical system is said to be uncontrollable.

This means that the input u is required to be capable of moving any state in the state
space to any other state in a finite time; regardless of what trajectory the state should take,
and with no constraint imposed on the input (i.e. the magnitude of the input can be as
large as desired). For nonlinear systems, the controllability conditions are very hard to

establish, therefore, only local controllability conditions are considered. A system is said
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to be locally controllable around an equilibrium point X = X" if for every neighborhood

W of X, thereisa neighborhood Q of X" such that for any two states X;,X, €Q, there
exist an input signal that will transfer the system from X, to X, in a finite time without

leaving W [2,6].

Definition 4:(Observabillity) a dynamic system is said to be observable at t; if there

exists a finite t, > t, such that for any state X, the knowledge of the input Uto.t,]

and the oytput y[[m] over the time interval [to » b ] sufficies to determine the state

Xy. Otherwise, the dynamical system is said to be unobservable at t,, [6].

5.3 Problem Statement

Consider the following single input nonlinear plants time invariant (autonomous)

form

X =f(X)+g(X)u 5.1
with X e R" being the state vector given in (5.2), u is a scalar single input.

X=Ec x - - x("")] 52

and n is the order of the system (i.e. the number of measurable output states).

Our aim is to determine the desired input signal which stabilizes the system around

any desired equilibrium point

In order to solve such problem, a prior information concerning the system in (5.1) is
required. These include the following assumptions:
Assumption 1: the nonlinear system is locally controllable.
Assumption 2: the order of the plant is known.

Assumption 3: the states are measurable.
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Assumption 4: the functions f(X) and g(X) are smooth vector fields on R", i.e.
f(X) and g(X) are continuously differentiable.

The first assumption is due to the complexity of establishing and verifying the
conditions of controllability for nonlinear systems. While, the second assumption is
required in order to know the number of neurons needed in the input layer of the neural
network. The third assumption is made to obtain the data of the unknown nonlinear

plants during the control process.

5.4 Stabilization Problem

The problem of controlling a system can be divided into two categories: stabilization
and tracking. In stabilization problems, a stabilizer is designed such that the state of the
closed loop system will be stabilized around an equilibrium point. In tracking problems,
a controller is to be designed such that the system will track a time varying signal. In this

thesis, we will restrict our attention to the problem of stabilization.

Consider the nonlinear autonomous system described by the following dynamics:

X =f(X)+g(X)u 5.3
with f(X) and g(X) being two smooth vector fields on R", where X €R" being the
state vector:

'

X = [x x - - x(“”‘)] 5.4
if the system

X=Ax+Bu 5.5
is the linearization of the original nonlinear system around an equilibrium point. Linear

theory tells us that if the linear approximation of the original nonlinear system is

controllable, then there exist a linear feedback law
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u=-Cx"' 5.6

where

C=lcy ¢ - - ¢y Y

that stabilize the linearization system in (5.5). Also the same feedback law will make the
original nonlinear system locally stable around that equilibrium point. This method was
used in designing controllers to stabilize nonlinear system around unstable equilibrium
point. However, this is valid over a small range of operation. In order to increase the
range of operation, nonlinear control method must be employed. In the following

discussion the stabilization through feedback linearization will be introduced.

Consider the nonlinear system in (5.3). If the controllability and involutivity
conditions are satisfied, then the system is locally feedback linearizable and there exist a

state transformations

]

Z(x)= [zl Lez, . . L“f"zl] 5.8
and an input feedback controller given by |

u=a(X)+B(X)v 5.9
that will transform the nonlinear system in (5.3) into the linear time invariant system

Z=AZ+bv 5.10

where A and b are in the controllability canonical form, that is
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01 0 0
0
A= ' andb=| 5.11
0O 0 - 1
LO o - - 0_ L1_

Thus, the problem of stabilizing the nonlinear system:
X =f(X)+g(X)u 5.12

is transformed into the problem of stabilizing the new linear time invariant system in

(5.10) using the new input v.

As mentioned in [19], if the output Z; is required to track a specified trajectory z;,
then the control law:
n
4zq _

dt” ‘
Wherec=[co ¢y - cﬂ-l]’zz[z %1 co 'zl(n-l)]'

CzZ 5.13

n is the number of states, and the prime stands for transpose, and Z; = z; — Z4,, leads to

the tracking error dynamic

d"z, d"'z, -
i +Cn_l'~dtn—_l+"+COZl =0

which will be asymptotically stable, if the positive constants ¢, are chosen properly such

that the polynomial s" +cn_|s"_I +:+-+Cq is Hurwitz. A special case of tracking
problem occurs when z;, is selected to be constant. This is called the stabilization or
regulator problem. In this case, the control law given in 5.13 will be:

v=—-CZ 5.14

where



49

Z = 'Z, 2l N . Z$n—l)]
Then, such a control law can place the poles anywhere with ¢, chosen properly such that
the polynomial s" + cn_lsn_l +-+++ ¢, is Hurwitz (i.e. it has all its roots strictly in the
left half plane). Using this linear state feedback control law assures that the linear time

invariant system in (5.10) is asymptotically stable around Z,,. Hence, the original

nonlinear system is also locally asymptotically stable around the same equilibrium point.

5.5 Feedback Linearization Using Neural Network

In this section, the proposed neural network feedback linearization controller is
discussed. Two different schemes are proposed to solve the problem of determining the
desired input signal to drive a nonlinear plant from its initial states to the desired states of

a linear time invariant system.

5.5.1 Scheme 1

As mentioned previously in section 4.2, the basic idea of input-state linearization can

be stated as follows;Given a feedback linearizable nonlinear system in the form

X = f(X)+ g(X)u

there exist a diffeomorphism that transform the system into
d"x’
=T e )

which is known as the controllable canonical form. A nonlinear feedback control law

then obviously exists which transform this system (the system in the controllable

canonical form) into a LTI system in the form

Z=AZ+bv
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This idea can be materialized by the block diagram of fig. 5.1, in which a neural
network is used to provide the control law, while in the same conext, the diffeomorphic
transformation is reallized by another neural network. The LTI system to which the
original system is exactly equivalent is introduced in this block diagram as a model-

reference system for the original nonlinear system.

We have later discovered that Levin and Narrendra [2] have addressed the same
problem and came up with almost the same block diagram. Their block diagram differs
from our in two respects. First, Levin and Narrendra used a third neural network for
identifying the plant even when the dynamics are known, and second, the algorithm used
for the adjustment of the weights in the neural network cortroller is an advanced version
of the traditional backpropagation algorithm which they call the dynamic
backpropagation algorithm.

In our block diagram, no identification is performed and a much simpler modified

back-propagation algorithm is used for the neural network controller.

xpi(k -1

L — /‘ u(k)L — 2 /’z@

»| plant >|NN

x.; (k
i (k) r
r(k—l + | z,(k) '

- LRM
- v(k - ])

TDL
C |- zi(k - 1)

Figure 5.1 Block diagram for scheme 1
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The neural network NN1 is used to generate the required linearizing input to drive
the nonlinear plant, while NN2 is used to perform state transformations. The output of

the neural network NN is given by:

u(k)= NN1[X,(k - 1),v(k - 1)] 5.15

Where X, (k— 1)= [xpl(k—- 1) © o Xpn (k— 1)], and u(k) is the control input at

time k , and X (k - 1) denotes the delayed value of the ith measured output state, v is

the new input designed for the control task, and the term TDL stands for time delay.

On the other hand, the output of the second neural network NN2 is given by:

Z(k)= NN2[X ,(k),u(k)] 5.16
where (k)= [21(k) - - 2o(k)],and X, (k)= [xp(k) - xpu(K)]
and Z, (k) denotes the i-th output of NN2 at time k, and Xpi (k) denotes the i-th output
of the plant at time k, and u(k) is the output of NN1 which is supposed to be the desired
input signal in the plant. Therefore, the output of NN2 can be written as:

2(k)= NN2[X, (k) NN1[X, (k - ) v(k - D]] 517
Also, note that the output of the plant is given by:

X, (k)= (X, (k - Du(k)) 5.18
where the function f(.) is unknown. Thus the plant's output can be written as:

X, ()= £(X, (k - ) NNI[X, (k - 1), v(k - D]) 519
Note that NN1 and NN2 are two distinct feedforward multilayer networks. In both

network, the output layer is chosen to be linear, while the hidden layers are nonlinear

tangential sigmoid functions usually taken to be

1-e
H(X)= 1+e—2x

5.20

as discussed in chapter 3.
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Both NN1 and NN2 are used to determine the desired input signal and the state
transformations adaptively and on-line. Now, the objective is to tune the neural networks

NN1 and NN2 simultaneously to produce the desired input signal and the transformations
such that the output of the plant Xp (k) and the output of NN2 Z(k) will follow the

output Z(k) of the linear time invariant system given by (5.10):

Z=AZ+bv
where A, and b are given by (5.11):
[0 1 - - 0] 0]
0
A= - ,and b=
0 0 - 1
_0 0o - 0_ _1_

As mentioned previously, this thesis is concerned only with the problem of stabilization.

Therefore the new input v is selected to be:
v(k—1)=-CZ(k-1)+c,r(k-1) 5.21

where C=[c, ¢ + - ¢,y], amd Z(k-1)=[z,(k-1) - - zn(k—-l)],
Zi(k - 1) is the i-th delayed value of the desired state, and the prime stands for

transpose, and r is the reference command signal chosen to be constant signal.

The output error e(k) is given by

e(k)=z(k)- Z(k) 5.22
and the criterion function to be minimized can be described by
E=%Zef(k) 5.23
i

where e;(k)=2z,(k)- 2i(k)
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and i is the overall neurons in the layer which is taken as the number of the desired output

states. If W, represent the weights of NN2, then the gradient of E with respect to w,

1s:

OE ( n (674
OW 33 j ‘ OW i
where W ,; are the weights connecting neuron i to the previous layer's neuron j.
oz

=7" 5.25
aw;,_ij

A

where Z" = [2:',..,22] is the output of the previous layer, and n is the number of

neurons in that layer (the previous layer).

Since NN2 is directly connected to the output, the weights of NN2 are adjusted using
conventional static backpropagation algorithm. However, since the error at the output of
NN1 is not available, the output error in (5.22) is propagated backward through the plant.

In this case the gradient of E with respect to W, , where W, represent the weights of

NNI1 is derived as follows:

-T2 () 20

j 1ij

and
ox.. OX.
n_ i O 5.27
aWlij du ow 1ij
OX i
and the unknown partial derivative E is approximated as follows:
axpi _ Xpi (k)— Xpi (k - 1) 598

du  u(k)-uk-1)
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Then, the weights W can be adjusted using a static backpropagation algorithm. Through
the simulation, we find that the outputs of NN2 which are functions of the nonlinear
states values and the input signal u which is the output of NN1 are matching the desired
states. Unfortunately, NN1 does not generate the desired linearizing input and we lose
the significance of the nonlinear states which are the output of interest. This problem
motivates us to modify the neural network structure shown in fig. 5.1, and we end up with

the following scheme explained in the following subsection.

5.5.2 Scheme 2

The modified proposed diagram scheme is shown in fig. 5.2 . Clearly, the neural
network structure is simpler in architecture than scheme 1. It is clear from the figure that
the neural network NN2 in fig. 5.1 which is supposed to handle the state transformation is
removed, and we are left only with one neural network NN. This neural network serves

as a direct adaptive feedback linearization controller, which will be proved through

simulations.

xp,.(k - 1)

TDL
‘ L
NN/ u(k)

»| plant %, (F)

/ e (K)

. 2,(k)

— LRM
v(k - 1)

Y

r(k - l) c

TDL
z,(k - 1)

Figure 5.2. Block diagram of feedback linearization controller using NN
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The output of the neural network is given by:

u(k)= NNJX, (k - 1),v(k - 1)] 529
where X, k-1)= [xp, k-1 - - Xpn (k- 1)] ,X;(k—1),and v are the delayed
values of the measured output states and the new input to be designed respectively, r is
the reference command signal and e is the output error. NN is a feedforward multilayer
neural network, with its output layer chosen to be linear , and the output of neurons in the

hidden layers are taken to be tangential sigmoid nonlinear function. A tangential sigmoid

function is give by
H(x)=

the term TDL stands for time delay.

1 - e—2x

1+e

5.30

The output of the plant is given by
X, (k)= (X, (k - 1),u(k)) 531

where f(.) is unknown function. Clearly, the plant's output is a function of the delayed
values of its output and the output of NN. Thus, :
X, (k)= £(X, (k - )NN[X,, (k - D, v(k - 1)]) 5.32
Now, the objective is to tune the neural network NN such that its output is the
required linearizing input to force the output of the plant X (k) to match the output
Z(k) of the linear time invariant system given by (5.10):
Z=AZ+bv
where X,(k)= k) -+ xp()]amd Z=[z 2z, - - z,] Aandbare

given by (5.11):
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0 1 0] 0]
0
A= ' ,and b=
0 0 - 1
_0 0o . 0_ _1_
and v is chosen to be
v(k—1)=-CZ(k—1)+c,r(k-1) 5.33
where Z(k—1)= [Z,(k— l) oo ozg(k- l)] , C= [co c, - - cn_,] is the

gain constant chosen properly such that the polynomial s" +cn_ls"'l +:-+Cq is
Hurwitz, and z; (k - l) is the i-th delayed value of the desired state,r is a constant
reference command signal.
The output error is given by

e(k)=Z(k)- X, (k) 534
In this case, the criterion function to be minimized E is derived as follows:

E= %Zef(k) 5.35

where i is the number of the output states. If W represent the weights of the neural

network NN, then the gradient of E with respect to w is derived as follows
OE

T xpi(k))?v—vpiij 536

and
0xX,, OX. ou
P =F 5.37
ow; Ou ow,
The unknown partial derivative Pl is approximated as explained in chapter 3 to be
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OXpi  Xpi (k)-x,(k-1)
du u(k)-u(k - 1)

5.38

Using the backpropagation algorithm explained in chapter 3, the weights of the

neural network NN are adjusted at each instant of time.

The proposed scheme as mentioned above serves as a direct adaptive feedback
linearization controller. This idea is original and never found in published papers. There
are many advantages of the proposed neural network feedback linearization controller.
These can be summarized as follows:

1. Easier to implement.

2. Minimize our efforts. That is because it avoids training stage, and it serves as on-line
direct adaptive controller.

3. It avoids state transformation. and perform well and generates the required linearizing
input and force the nonlinear states to follow the desired states.

4. Simple architecture

5. Removes the feedback linearization method drawbacks.



CHAPTER 6

SIMULATION RESULTS

The performance of the proposed neural network controller will be investigated and
an extensive simulation study will be performed in this chapter. The initial values of
the neural network weights are all set to small random quantities. This is so to assure

the learning of the network, and to prevent the weights from getting stuck at high

values.

It is assumed that the number of states is known. This is required to determine the
number of the input neurons in the neural network. Also, it is assumed that the states

are measurable.

Through simulation study, we found that a three layered neural networks using the
tangential sigmoid function are adequate to generate the required input signal to drive
the plant from its initial states to the desired states of a linear time-invariant system.
Therefore, in all our simulation, we have fixed the number of layers to 3, with two
hidden layers and one output layer. The number of neurons in the input layer is fixed to

the total number of the plant’s states plus the input v. The number of neurons in the
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output layer is fixed to one. But, the number of neurons in the hidden layers is a matter
of guesswork and has to be found using simulations. This is because there are no rules

which tell the number of neurons in the hidden layer for specific situations.

Through all the simulation results the sampling time is fixed to 107 second, and

xm in the figures denotes the desired states of the linear time-invariant system.

In the following sections the performance of the proposed neural network controller

applied to three different examples is discussed.

6.1 Antenna Arm Control System

The antenna arm control system is one of many interesting problems in stabilization
control system. In this section the antenna arm system shown in fig.(6.1) will be

controlled using the proposed technique:

00

- 180 °

Figure 6.1 Antenna arm control system

This system can be described by the following second order differential equation:

2
d—;p+2d—(p—105inq)=u 6.1
dt dt
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d
where @ is the antenna arm angle to be controlled, the term 2 d—(f represent the viscous

friction acting against the velocity , the term 10sin@ is the force of the gravity, and u

is a current applied to a DC motor attached to the antenna arm.

In state space representation, the above dynamic can be written as:
X=X
R 6.2
X, =10sinx, —2x, +u

where X, =@ and X, = @.

Setting X; =X, =0 and solving for the equilibrium points, it can be verified that

equilibrium points have the form

X= (sin_I (-1-—3) ,O) , where X = [xl ,x2]

Our goal is to stabilize the antenna arm angle at the horizontal position, that means

to control the antenna arm angle at X; = @ = 90°.

In our investigation of the antenna arm system we will limit our attention to the
equilibrium point (90° ,O). Physically, we can see that the system can hardly maintain
rest at this equilibrium point because the force of gravity will tend to pull the system
downward to the ground. So, a sufficient current is needed to maintain the system at
this position. Theoretically, this is due to the stability property of the equilibrium point.
Lyapunov first method tells us that if the linearized system at the desired equilibrium
point is strictly stable, then the equilibrium point is asymptotically stable for the original
nonlinear system. Furthermore, if the linearized system is unstable, then the
equilibrium point is unstable for the nonlinear system.

The linearized system has the form;

.| % 0 1 |x 0
X={ "|= + u=AX+bu 6.3
X, 10 -2)x,| {-10
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Checking the eigenvalues of the matrix A, we found that the linearized system is
unstable. Therefore, the equilibrium point is unstable. The state space equations in (6.2)

can be written in the following form:
X = £(X)+g(X)u 6.4
where X = [xl X, ]

X,

and f(X)= l:lOSinxl _ 2x2]’ and g(X)= m 6.5

It is clear that the given system is in the controllability canonical form. If the

linearizing input is chosen as

u=v-10sinx, +2x, 6.6

then, the original nonlinear system will be transformed into the following linear one:

X, =X
1 2
. 6.7
X, =V

where v is the new input to be designed for the control task. Suppose that we want the

eigenvalues of the linearized closed-loop system to be assigned at 7\.1,2 = —3. Then,

the characteristic equation of the linearized closed loop system has the form

(s+3)s+3).

The state feedback assigning the desired eigenvalues to the linearized closed-loop

system is

: -1
v=—c0x—c|x—---—cn_lx(n ) 6.8
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where x is the scalar output of interest, in this example X = X, —X,, where X, is the

desired output angle, with ¢;’s chosen properly such that the polynomial s? + C;s+¢g

is hurwitz (i.e. it has all its roots in the left half plane). Then, the new input leads to the

exponentially stable dynamics
Thus, if we choose

(s+3)s+3)=s® +¢;5+¢ 6.10

Then, the control law will be
V= —9(xl - X4 )-— 6()'(l - Xd)
V= —9(xl - xd)— 6x, 6.11

and the linear time-invariant system in (6.7) became

X, X, 0
. = + r 6.12

where 1 = x4 =90°.

Using the feedback linearization method the linearizing input became;

u=-9x, - 6x, +9r - 10sinx, +2x, 6.13

This scheme is, however, an off-line method which requires an interruption of the
process in order to tune the gains of the controller, and this is impractical because the
dynamics may change during the time when the gains are being updated. Also, this

technique requires a precise knowledge of the plant's dynamic.
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In contrast, applying the proposed neural network controller will solve this
problem, and the dynamics of the plant need no longer to be known. With the proposed
neural network controller, we found through the simulation that a neural network with
the configuration given in table(1) is adequate to generate the desired input signal to

drive the plant from its initial states to the desired states of the linear system in (6.12).

#neurons in | #neurons in | #neurons in | #neurons in
input layer | st hid.layer | 2nd hid output layer
layer
4 10 5 1
TABLE 1

This problem was contributed by Martin Hagan in [47], where a neural network is

used to model the second component of f(X) given in eqn. (6.5) in order to use it to

cancel the nonlinearity. That is, the nonlinear term 10sinX, —2x, which is precisely
known is approximated in an off-line manner by a neural network N, after that the

linearizing input is calculated as

u=v-N;
thus canceling the nonlinearity. The simulation result obtained in [47] is shown in fig.
6.2 which compare the response of the nonlinear system with the neural network
controller to that with the perfect cancellation controller (i.e. the linearizing input
calculated by the feedback linearization method). It is clear that the neural network
does very well compared to the perfect cancellation controller. Clearly, with an initial

condition of 10°, the settling time is about 2.5 seconds with no overshoot.
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Unfortunately, this method is only applied to nonlinear systems which are in the

controllable canonical form.

On the other hand, in our proposed scheme a neural network is used as a direct
controller with no training stage using a modified backpropagation algorithm called the
backpropagation through the plant algorithm. Also the proposed scheme is performed
in an on-line manner for unknown nonlinear dynamics. The simulation results are
shown in figures 6.3(a-f) with initial condition X = [— 45° 0 ] As shown
in the results, the neural network controller generates the required input signal and the
nonlinear states followed the desired states after 7000 iterations, that means the settling
time is about 7 seconds. Also, a maximum overshoot of +5 radian occurs. As a result,
the proposed scheme in [47] is better than our scheme, in the sense that it has a faster
response with no overshoot. This perhaps due to the following reasons: The approach
proposed in [47] is an off-line scheme with the exact dynamics precisely known. The
slow convergence property associated with the back-propagation algorithm which
become more severe in an on-line scheme. Starting with different initial condition.
Also, different neural network typology is used, in our proposed scheme a 3-layered
neural network is used, while 2-layered neural network is used in [47] which is easier to

implement.

However, the proposed scheme has the following advantages over the scheme
proposed in [47]: It is applicable to unknown nonlinear systems not necessarily in the
controllable canonical form. Moreover, it avoids the training stage. Also, it serves as a
direct adaptive controller which produces a smooth input to drive the plant to the

desired performance as shown in fig. 6.3e.
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fig. 6.2 The neural network controller response and the perfect cancellation controller

response as given in [47].
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Figure. 6.3a The first linear and linearized state with initial condition; X, =—45",x, =0
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Figure 6.3b The error between the first linear and linearized state
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Figure 6.3c The 2nd linear and linearized state with initial condition; x , =45, x, =0.
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Figure 6.3d The error between the second linear and linearized state
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Figure 6.3e The desired linearizing input of the feedback linearization method and the
linearizing input produced by the proposed NN controller.
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Figure 6.3f The error between the desired linearizing input calculated by feedback

linearization and the measured linearizing input produced by NN.




6.2 The Inverted Pendulum Stabilization Problem

There are many examples of unstable systems , one of these examples is the
inverted pendulum. It is unstable because the centroid of the system is placed well
above the point of suspension. So it cannot remain in the desired vertical position
unless there is a control force applied to the base. In this section the proposed controller

will be used to stabilize the inverted pendulum at the vertical position.

Let us consider an inverted pendulum with a DC motor control as shown in fig.
(6.4). This problem is introduced by [Zak and MacCarley, 1986] [39]. It is assumed
that the DC motor is armature controlled, and the motor inertia is negligible when

compared with the pendulum inertia. The DC motor is modeled as shown in fig.(6.5).

As given by[39], this system can be described by a third order system:

X, X2 0
. g . m
X, |=]|=sinx, + ——X, [+| 0 {u 6.14
xz I kl Pm 3 i
L L L |

Where X; =@ is the angular position, X, = @ is the angular velocity, and x; =1 is
the armature DC current, and u is the voltage supplied to the DC motor, and g, I,
m,k_ .ky, R, L are some non zero constants. Reasonable parameters describing our

system are
g=98Im/s’,l=1m,k, =0INm/A,k, =0.1Vs/ rad,
m = 10kg,R = 1Q,L = 100mH
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7 1= 1Pm
.~ (moment of inertia
for point mass on

massless shaft)
PIVOT POINT

CONTROL 10:1
VOLTAGE

Figure 6.4 Inverted pendulum controlled by a DC motor

Vp = wam = KbIOé

Figure 6.5 Model of an armature-controlled DC motor




74

In order to simplify the notation, let

10k 10k R 1
kl—_-g',kz: zm,k3=_ b,k4=“——,andk5=_
1 1°'m L L L
then, the system equation take the form given by eqn. 6.15:
X, X, 0
X, |=| kysinx, +k,x; |+| 0 Ju 6.15
X4 k,x, +k, X, ks

Setting X, = X, = X; =0 and solving for the equilibrium points, it can be verified that

the set of operating point is;

X=(sin"(%ll-:—5u),0,—%u) ,where X = [X,,X,,X;]

1%4 4

In our investigation of the inverted pendulum, we will limit our attention to the zero
equilibrium point which corresponds to the vertical position. The linearized model at
this equilibrium point has the following form;

X, 0 1 0]x 0
X=|%,|=|k; 0 k,|[x,|+| 0 ju=AX+bu 6.16
X5 0 k, kyix3| |ks
Checking the eigenvalues of the matrix A in (6.14), we found that the linearized system
is unstable. Therefore, the equilibrium point is unstable. The parameters entering in
eqn. 6.16 are
k, =98k, =Lk; =-10,k, =-10,ks =10
The response of the uncontrolled inverted pendulum is shows in figure 6.6. It is

clear from the figure that the system maintains rest at the stable equilibrium point

X, = *n*pi, where pi = 3.14 and n=1,3,5,...
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Figure 6.6 The response of uncontrolled inverted pendulum, u=0

The nonlinear system in (6.15) can be written in the following form;

X=f(X)+g(X)u 6.17
where X = [x, X, x3]
X2
and f(X)=|k,sinx, +k,x,
[ ksx; +kgx;

0

and g(X) =0
ks

It is clear that the given system is not in the controllability canonical form, and

applying the feedback linearization method requires a state transformation to be found
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so that the system is transformed into the controllability canonical form, then a

linearizing input is introduced.
Simple calculations give:

0

kyks
ad.g=|—k,ks |,and ad}g= k, k. ks 6.18
and
rank[g ad;g ad%g]=3 6.19

also, the set {g,ad £ g} is involutive, because the vector fields in this set are
constant.

As shown in[39], choosing the first state transformation as;

kyks
1
then, Tz = X2 6.21
k,ks
1 .
and T, = (k, sinx; + k,x3) 6.22
k,ks
Thus, the new state transformation is
T, (x)
z(x) =T, (x) 6.23
T;(x)

In the new state transformation the system is expressed as
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Z Z, 0
23] | (k, cos(k,ks )+ kK3 2, —kyzs + {ik“ sin(k,ksz,)| L1
L 275 A

Choosing the linearizing input as:

k,k,
koks

u=v - (k, cos(k,ksz, )+ k ks 2, — ko2 + sin(k,ksz,) 625

will transform the original nonlinear system into the following linear form:

Z Z,
Z, |=|24 6.26
Zy \

and, the new input v is designed as follows:
v=—cyZ~C¢,Z—C,Z 6.27

where Z=12, — z,
with the positive constants C;’s chosen properly such that the following polynomial
s’ +0232 +C;s+Cy 6.28
has all its roots strictly in the left half plane, leads to the exponentially stable dynamics
s® +0252 +c;5+¢Cy 6.29
Now, suppose that we want the eigenvalues of the closed-loop linearized system to be
assigned at A, 3 =—2,-2,—10. Then, the characteristic equation of the linearized
closed-loop system has the form
(5+2) (s+10)=5® +¢,5% +¢;5+¢, 6.30
s° +14s® + 445+ 40=s> +¢,s° +¢;5+¢,

Therefore, the control law is

v=-40(z, —z4)-44(2, — 24)- 14(2, - Z4) 6.31
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where Z, is the vertical position of the inverted pendulum, z4 = 0°. Thus the control

law
v=-40z, —44z, —14z; + 40z, 6.32
and the linear time-invariant system in (6.26) became;
Z, Zy 0

Where r is the desired vertical position, in this case r =z = 0’

Applying the proposed neural network controller, on the other hand, avoids the state
transformation and produce the desired input signal to the plant to cancel the
nonlinearities and drives the nonlinear states to the desired states of the linear time-

invariant system in (6.33).

The following figures contain the simulation results for the proposed neural
network controller. In fig. 6.7(a-f) the responses of the closed loop system when
subjected to non zero initial condition is depicted. Figure 6.7(g-h) shows a comparison
between the linearizing input calculated by feedback linearization method and the

linearizing input generated by the proposed neural network control.

Observe that the proposed neural network control with the configuration given in
table 2 is capable to drive the nonlinear states to the desired states of the linear time-

invariant system.
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#neurons in | #neurons in | #neurons in | #neurons in
input layer | 1st hid.layer | 2nd hid. output layer
layer
5 10 5 1
TABLE 2

As shown in the figures, the proposed neural controller generates the desired input
signal and the nonlinear states agree with the desired states of the linear time-invariant

system after 5000 iterations.

Although the stabilization of the inverted pendulum at the vertical position is a
very hard problem, it is clear from fig.6.7(a-f) that the proposed neural network which
serves as a direct feedback linearization controller stabilized the inverted pendulum at
the desired vertical position. further more, it is not only producing the desired
linearizing input, but also it handle the problem of the state transfdrmation. This can be

considered as an advantage of the proposed neural network control.

In a first stage of this work, we tried to stabilize the inverted pendulum through the
structure given in fig. (5.1) which is similar to the block diagram proposed by Levin and
Narrendra in [2]. In [2], the training was achieved after 50000 steps, while the neural
network structure shown in fig. (5.1) fails to achieve the goal. On the other hand, the
proposed scheme shown in fig. (5.2) proves its capability to stabilize the inverted
pendulum and forcing the nonlinear states to follow the desired states of the linear time-
invariant system after 5000 steps,(i.e. the proposed scheme is simpler and achieves the
goal with a steps reduced by a factor of 1/10 when compared to the neural network

approach proposed by Levin and Narrendra).
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Figure 6.7a The first linear and linearized state with initial condition; X, =45,% =x=0.
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Figure 6.7b The error between the first linear and linearized state
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2nd lin. & linearized state
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Figure 6.7cThe second linear and linearized state with initial condition; x=45,%=x=0.
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Figure 6.7d The error between the second linear and linearized state
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Figure 6.7¢ The third linear and linearized state with initial condition; X =45,%=0x%=0.
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Figure 6.7f The error between the third linear and linearized state
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Figure 6.7g The desired linearizing input of the feedback linearization method and the

linearizing input produced by the proposed NN controller required to stabilize the

inverted pendulum.
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Figure 6.7h The error between the desired linearizing input calculated by feedback

linearization and the measured linearizing input measured by NN.
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6.3 The Van Der Pol Equation

The second order nonlinear diffgrential equation: \

mX + 2c(x2 - 1)7( +kx=0 6.34

with m, ¢, and k being positive constants, is the famous van der pol equation. It can

be regarded as describing a mass-spring-damper system with a position dependent

damping coefficient ZC(X2 - 1), or equivalently, an RLC electric circuit with a

nonlinear resistor.

In state space representation, the above dynamic can be described as:
X=X

) 2¢c/ 5 k 6.35
m m
where X| = X, and X, =X

This system has a unique unstable equilibrium point at the origin. Furthermore, it
has a stable limit cycle. Limit cycle is defined as an isolated curve, and stable limit
cycle means that all trajectories in the vicinity of that cycle converging to it as t— co.
Figure 6.8 shows for different values of c that the system has a unique closed curve that

attracts all trajectories starting off the curve [48].



Fig. 6.8b

Figure 6.8 The limit cycle of the system.(a) c=1, (b) c=2
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Our objective is to stabilize this system at the origin. In order to stabilize this
system at this equilibrium point, we need to apply a control force. So, the above

v
dynamic has the following form;

mX + 2c x2—1)7(+kx=u 6.36
and the state space representation became;

X| =X,
6.37

5(2=-2—c xf~l)(2——k—xl+—l~u
m m m

This system is clearly in the controllability canonical form Introducing the linearizing

input:

u=mv+ 2c(xf - 1)(2 + kx| 6.38

leads to transform the nonlinear system into the following linear system:

X =% 6.39
Xy =V '

reasonable parameters of our system are;c=1,2,and m=1,and k=1.

Now, suppose that we would like the nonlinear system to follow the states of the

linear time-invariant system with eigenvalues assigned at A, =—2,~2. Then, the

characteristic equation of the closed-loop linearized system has the form
(s+2)s+2).
The state feedback assigning the desired eigenvalues to the linearized closed-loop

system is
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with the positive constants ¢;’s chosen properly such that the polynomial
52 +C;s+¢, has all its roots strictly in the left half plane. Thus, if the positive

constants C;’s chosen such that
(s+2)s+2)=s" +c¢ s+¢, 6.41
Then, the new input is

v=-4x, —4x, +4x, 6.42

and, the linear time-invariant system in (6.35) has the following form:

X, X, 0

= +| Ir 6.43
where r is the desired position, In this case r = x4 = 0.
With the neural network configuration given in table 3, we found that the proposed

controller generates the desired input signal to the plant and the nonlinear states follow

the desired states given by the system in (6.43).

#neurons in | #neurons in | #neurons in | #neurons in

input layer | 1st hid.layer | 2nd hid. output layer
layer
4 10 10 1

TABLE 3
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Figure 6.9(a-f) illustrate the simulation results. Clearly, the proposed neural
network produces the required input signal to drive the nonlinear states from its initial

. . " .
state to the desired ones after 9000 iterations.

The systems described by the Van Der Pol equations are oscillatory in nature and
these oscillation are quite robust, meaning that starting from about any tnitial condition
you always converge to the limit cycle. The feedback linearization method and
feedback linearization through neural network will completely destroy these oscillations

and produce a stable system that can be easily controlled by linear control method.
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Figure 6.9a The first linear and linearized state with initial condition; X=[1,0].
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Figure 6.9b The error between the first linear and linearized state.
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Figure 6.9cThe second linear and linearized state with initial condition; X=[1,0].
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Figure 6.9d The error between the second linear and linearized state.
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Figure 6.9¢ The linearizing input calculated by feedback linearization method and the
linearizing input generated by the proposed NN.
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Figure 6.9f The error between the linearizing inputs of feedback linearization and the
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CHAPTER 7
CONTRIBUTIONS,
CONCLUSIONS AND

RECOMMENDATIONS

An area of control systems which offer much scope for the use of artificial neural
networks is nonlinear control. In this work we have concentrated upon a method to

perform input-state feedback linearization using neural networks.

7.1 Contributions

The main contributions in this thesis can be summarized as follows:
1. The neural network architecture suggested by Levin and Narrendra in [2] is
simplified. In the proposed scheme, one neural network proves its capability to
perform input-state feedback linearization method.
2. The proposed scheme avoids the training stage and the identification step which is
considered as the first essential step in [2].
3. The back propagation algorithm through the plant suggested by Psaltis et al. [10]

is modified and implemented. Also, it is proved to be computationally efficient.
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4. Input-state feedback linearization is performed on-line.
5. The state transformation is avoided.

6. Input-state feedback linearization is applied to unknown nonlinear systems.

7.2 Conclusions
1. Neural networks can be effectively used as a direct adaptive feedback linearization
controller. That is to say, the neural networks are capable of generating the desired
linearizing input required to drive the plant from its initial states to the desired states
of a linear time invariant system.
2. The proposed neural network is simple in architecture and easier to implement.
3. Neural Network controller can perform input-state feedback linearization for
unknown dynamics. Provided that they are feedback linearizable.
4. The proposed scheme is systematic. This is due to the fact that state
transformation is avoided.
5. An overshoot occurs as a result of setting the initial weights to small random

numbers.

7.3 Recommendations
1. Extension to systems which are not feedback linearizable can be considered. This
can be done if the architecture of the proposed method is built according to dynamic
feedback.
2. Extensions to MIMO case can also be considered.
3. Input-output feedback linearization with the existence of internal dynamics can be
undertaken. (i.e., when the relative degree is less than the system's order).
4. Theoretical study can also be undertaken to analyze the proposed method in order

to gain insight about local and global stability properties.
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5. Comparisons can also be considered with other schemes using neural networks,
such as neural network controller based on an indirect control methods, and neural
networks based on learning using the forward and inverse dynamics method, or
neural network with sliding control scheme.

6. Improving the transient response can be undertaken. This is can be accomplished
if the initial weights are chosen in a different way rather than setting them randomly.
7. The slow convergence property can be improved by using different modified
backpropagation algorithm, such as the backpropagation algorithm with adaptive

learning rate and a momentum term.
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