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ABSTRACT

Name: Abdel-Aal Hassan Ismail Mantawy
Title: Unit Commitment By Artificial Intelligence Techniques
Major Field: Electrical Engineering

Date of Degree: June 1997

The present work deals with thermal generation scheduling, which could be
considered the major part of the overall scheduling problem of hydrothermal power
systems. The scheduling problem of thermal generating units can be considered as two
linked optimization problems. It comprises the solution of both the Unit Commitment
Problem(UCP) and the Economic Dispatch Problem(EDP). The former is a combinatorial
optimization problem with very hard constraints, while the later is a nonlinear
programming problem.

The growing interest in the application of Artificial Intelligence(AI) techniques to
power system engineering has introduced the potentials of using this state-of-the-art
technology in the thermal generation scheduling of electric power systems. Al
techniques, unlike strict mathematical methods, have the apparent ability to adapt to
nonlinearities and discontinuities commonly found in power systems. The best known
algorithms in this class include evolution programming, genetic algorithms, simulated
annealing, tabu search, and neural networks.

In the present work, seven different Al-based algorithms have been developed to
solve the UCP. Two of these algorithms namely, simulated annealing and genetic
algorithms, are implemented in a novel way. The other five proposed algorithms are
applied for the first time to solve the UCP. These algorithms are a Simple Tabu Search
Algorithm (STSA), an Advanced Tabu Search Algorithm (ATSA), a hybrid of Simulated
annealing and Tabu search algorithms(ST), a hybrid of Genetic and Tabu search
algorithms (GT), and a hybrid of Genetic, Simulated annealing, and Tabu search
algorithms (GST).

Xvil



As a first step to solve the UCP, some modifications to the existing problem
formulation have been made to render the formulation more generalized. An augmented
model including all the problem constraints is presented.

A major step in the course of solving the UCP, is the solution of the EDP. In this
regard, an efficient and fast nonlinear programming routine is implemented and tested.
The implemented routine is based on a linear complementary algorithm for solving the
quadratic programming problems as a linear program in a tableau form. Comparing the
results of our proposed routine, it is found that the results obtained are more accurate than
that obtained using an IMSL quadratic programming routine. The application of this
routine to the EDP is original.

The corner stone in solving the combinatorial optimization problems is to come up
with good rules for finding randomly feasible trial solutions from an existing feasible
solution, in an efficient way. Because of the constraints in the UCP this is not a simple
matter. The most difficult constraints to satisfy are the minimum up/down times. A major
contribution of this work is the implementation of new rules to get randomly feasible

solutions faster.

All the proposed algorithms have been tested on several practical systems reported
in the literature, with different complexities. The numerical results obtained by the
proposed algorithms are superior to the results reported in the literature

DOCTOR OF PHILOSOPHY

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

DHAHRAN, SAUDI ARABIA
JUNE 1997
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CHAPTER ONE

INTRODUCTION

The efficient and optimum operation and planning of electric power generation
systems have always occupied an important position in electric power industry. The
economic operation problem in electric power systems involves the scheduling of both
thermal and hydro generating units to minimize the cost of supplying the power
requirements of the system over a certain period under specified system constraints. The
optimal operation of the thermal generating units involves the minimization of fuel
expenditure. Estimates have shown that a 1% reduction in production costs can result in
about $1 million annual savings for each 1000 MW of installed capacity.

The present study deals only with thermal generation scheduling which could be
considered as the major part of the scheduling problem of hydrothermal power systems.
The scheduling problem of thermal generating units comprises the solution of both the
unit commitment and economic dispatch problems.

The Unit Commitment Problem (UCP) is the problem of selecting the generating
units to be in service during a scheduling period and for how long. The committed units
must meet the system load and reserve requirements at minimum operating cost, subject

to a variety of constraints.



The Economic Dispatch Problem (EDP) is the optimal allocation of the load
demand among the running units while satisfying the power balance equations and the
units operating limits [1].

The solution of the UCP is really a complex optimization problem. It comprises the
solution of the EDP. The UCP can be considered as two linked optimization problems.
The first is a combinatorial problem and the second is a nonlinear programming problem.
The exact solution of the UCP can be obtained by a complete enumeration of all feasible
combinations of generating units, which could be a massive number. Then, the economic
dispatch problem is solved for each feasible combination. Basically, the high dimension
of the possible solution space is the real difficulty in solving the problem.

The solution methods being used to solve the UCP can be divided into four
categories [1-3,8-93]:

e Classical optimization methods such as: Dynamic Programming, Integer and
Mixed Integer Programming, Lagrangian Relaxation, Linear Programming,
Network Flow Programming, and Probabilistic Methods [9-56].

o Heuristic methods such as Priority List and Expert Systems [57-64].

o Artificial Intelligence methods such as: Neural Networks, Simulated Annealing,
Genetic Algorithms, and Tabu Search [65-74].

e Hybrid Algorithms: hybridization of two or more of the previously mentioned
methods [76-93].

In the following, a survey of the classical optimization methods which have been

reported in the literature is presented.
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1.1 CLASSICAL OPTIMIZATION METHODS

Classical optimization methods are well documented in the literature [9-56] as a
direct means for solving this problem. Some of these methods give good results, like
Lagrangian relaxation, while others face the problem of dimensionality, particularly in

the case of large-scale systems, as in Dynamic Programming and Mixed-Integer

Programming.

1.1.1 DYNAMIC PROGRAMMING
Dynamic Programming (DP) was originally developed in 1950 by Richard
Bellman. Since this date, it has been recognized as an extremely powerful approach for
solving optimization problems. DP methods [9-21] decomposes the UCP in time. Starting
at the first hour of the scheduling horizon, commitment of units progresses one hour at a
time, and combinations of units are stored for each hour. This is the forward path of the
DP method. At the end of the execution of the forward path, for each hour-state pair (a
state is defined as a combination of the ON/OFF status of all units) the following
information is stored:
(a) The minimum total production cost to reach the state starting from the first hour.
(b) An optimal link-back pointer pointing at that state of the previous hour which
resulted in the optimum (minimum total cost) transition to the current hour
state, and
(c) An array whose elements represent the continuous up or down times of all

units. This information is retained in order to be able to observe time dependent



constraints such as unit minimum up and down time, time dependent start-up
costs, etc.

Finally the most economical schedule is obtained by backtracking from the state
with the least total cost in the final hour through the optimal link-back path to the state of
the initial hour.

Numerous papers have been published on solving the UCP by DP [9-21]. In the
following, a short description for some of these papers is presented.

In 1966, P. G. Lowery published a paper [9], to solve the UCP by DP. The real
concern of this study was to demonstrate the applicability of the DP method to solve the
UCP.

In 1971, J. D. Guy [10] presented a new method for solving the UCP. The security
constraints were included and the DP was the basic method for the solution.

In 1971, A. K. Ayoub et al. [11] presented a method of scheduling thermal
generating units to achieve minimum operating costs, including both running and start-up
costs. Spinning reserve was also considered based on a probabilistic approach as a
security function. The DP was used in unit commitment and security function
calculations.

C. K. Pangetal. [12], 1976, presented a paper in which a truncated DP method for
the UCP is described. The method used the priority list of the available units so as to limit
the original DP search for economical and satisfactory schedules. As a result the method
does not guarantee the optimal solution. The constraints taken into consideration in [12]
were minimum up/down, crew, transmission losses, and spinning reserve. The start-up,

shut-down as well as the running costs are also included.



In 1981, C. K. Pang et al. [13] presented a study to compare three different DP
algorithms for the UCP. The algorithms are DP-Sequential Combinations, DP-Truncated
Combinations, and DP-Sequential/Truncated Combinations. The algorithms were based
on performing the different combinations of the units that are previously ordered
according to a priority list, hence some computations saving were achieved. However,
the accuracy of the solution is degraded because of the limited search space and building
the search on the priority list results which is not globally optimal.

In 1985, P. P. van de Bosch et al. [14] solved the UCP using a decomposition
approach that is based on the DP method. Decomposition technique is used to reduce the
computer resources required by the DP, by dividing the problem into smaller
subproblems, which is much easier to solve. The subproblems are then solved by the DP
based on the successive approximation technique. Although the solution procedure stops
in a finite number of steps, there is no guarantee that the optimum solution of the problem
will be reached.

In 1985, G. L. Kusic [16] presented an approach to the problem of economic
dispatch and unit commitment using the DP algorithm. The proposed method considered
all valid combinations of the previous hour with the accumulated ON and OFF times for
each unit in each combination of the previous hour. The method counts the production
cost for each combination of the previous hour with accumulated cost, up to each
combination of the previous hour. The start-up costs incurred in the transition from each
previous hour combination to each present hour combination are also considered.

In 1987, Walter L. Snyder et al. [17] introduced a practical approach for solving the

UCP of a real power system using the DP algorithm along with some heuristic rules to



save computation time. This approach features the classification of the generating units
into related groups so as to minimize the number of the unit combinations that must be
tested without precluding the optimal path. To achieve the execution time saving,
individual units were assigned status restrictions in any given hour, such as unavailable,
fix loaded, must run or derated capacity. The reserve, ramping, and minimum up/down
time constraints were also taken into consideration.

In 1988, Walter J. Hobbs et al. [18] presented an enhanced DP approach for the
UCP. The proposed approach used a sequential priority list method for forming the unit
combinations to be evaluated in each hour of solution. From a given priority ranking of
all units, the approach forms the working list for each hour which excludes all
unavailable, must run, fixed load, and peaking units. Unavailable units are not considered
during the formulation of the combinations. Must-run and fixed load units are always
committed for the hour, and peaking units are independently committed (based on price)
during economic dispatch. Subsequent combinations are formed by decommitting one
unit at a time.

In 1991, Chung-Ching Su Yuan-Yih Hsu et al. [19] presented an approach for
solving the security constrained multi-area UCP. The method takes power system
dynamic stability limit into consideration. In the proposed method, DP was first
employed to perform unit commitment on the whole system. The eigenvalues for the
resultant hourly generation schedules were examined to see if they satisfied the
prespecified dynamic security criterion. If the dynamic security requirements are not met
at certain hours, an iterative algorithm is employed to reduce the inter-area line flows

gradually and to perform area dispatch and, if necessary, area unit commitment, in order



for the resultant generation schedule to satisfy the dynamic security requirements. As a
result, a generation schedule is obtained which satisfies the dynamic stability
requirements at the prices of a higher operating cost.

Based on the previous discussion of the various DP approaches for solving the
UCP, it can be concluded that the main problem of the DP methods is the curse of the
dimensionality: Storing all possible unit combinations (2¥-1, N: number of units) at
every hour is impossible even for moderate size systems. Thus, heuristic techniques are
used to restrict the number of combinations to be searched and the number of strategies to
be saved at every hour [13,17]. These heuristic techniques produce suboptimal solutions
and in certain cases may require the relaxation of some constraints in order to produce a
solution.

The application of the DP method to the UCP has, however, another major
difficulty in treating time-dependent constraints such as unit minimum up/down times,
time dependent start-up costs, start-up ramps, etc. This difficulty has been well
recognized in the literature [13,18] and has lead to suboptimal solutions or failure to
provide a solution even in the case of complete state enumeration. The reason for this
difficulty is that the definition of the “state” in the DP solution of the UCP as the
combination of 0-1 status of all units is incorrect. This incorrect choice of the “state”
leads to the requirement to keep some information on the continuous up or down times of
all units. However, this information is incomplete since it is stored for the optimal
transition path only and not for every path. Therefore, valuable information for the

determination of the optimal (or, in some cases, even a feasible) solution is lost.



To overcome this problem, the state of the DP should be defined as
(t4,7200meeeen ,Tn ), Wheretis the continuous up time (if positive) or down time (if
negative) of unit i. However, with this definition of the state, the complexity of the DP

solution becomes prohibitive even for very small size systems.

1.1.2 LAGRANGIAN RELAXATION

The Lagrangian Relaxation (LR) methodology [22-37] uses Lagrange multipliers
for the system constraints (power balance and reserve) and adds the associated penalty
terms in the objective function to form the Lagrangian function. The problem then is
decomposed into N subproblems one for each unit.

Based on the duality theory, the LR method subsequently tries to find those values
of the Lagrange multipliers that maximize the dual objective function. This is a very hard
problem to solve. Even if the solution to the dual problem was found, due to the non-
convexity of the primal (original problem) objective function, feasibility of the primal
problem is not guaranteed and the optimal values of the primal and dual problem
objective functions would not be equal (called duality gap). The efforts of the LR method
are thus focused on finding some values for the Lagrange multipliers that satisfy the
systems (coupling) constraints and meanwhile reduce as much as possible the duality gap.
The later is known by duality theory to be a lower bound to the optimal value of the
objective function.

In 1973, Marshall L. Fisher [22] proposed the applicability of the Lagrangian
method for solving the scheduling problems. The paper presented an algorithm for

solving resource-constrained network scheduling problems, a general class of problems



that includes the classical job-shop scheduling problem. It used Lagrange multipliers to
dualize the resource constraints, forming a Lagrangian problem in which the network
constraints appeared explicitly, while the resource constraints appeared only in the
Lagrangian function. The algorithm was applied to examples of the job-shop scheduling
problems. The results provide indications of the potential for the Lagrange multiplier
algorithm.

In 1977, John A. Muckstadt et al. [23], suggested the application of the LR method
for solving the UCP. The fundamental idea behind the LR was the incorporation of
selected inequality constraints into the objective function by the use of Lagrange
multipliers. A mixed integer programming model to the UCP was presented. A branch
and bound algorithm was proposed using a Lagrangian method to decompose the
problem into single generator subproblems. Each of these subproblems was solved by a
simple DP recursion. A subgradient method was used to select multipliers that maximize
the lower bound produced by the relaxation. The minimum up/down constraints were
taken into account. The crew constraints were not considered as they do not apply to
individual units. The incorporation of these constraints makes the problem difficult to
decompose.

In 1983, D. P. Bertskas et al. [24] presented an algorithm based on the LR and
nondifferentiable optimization. The approach was based on a duality transformation of
the original problem and optimal solution of the associated nondifferentiable dual
problem. The algorithm has two advantages over that presented in [23]. First,
computational requirements typically grow only linearly with the number of units.

Second, the duality gap decreases in relative terms as the number of units increases, and
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as a result the algorithm tends to actually perform better for solution of large size
problems.

In 1983, A. Merlin et al. [25] proposed a new implementation for solving the UCP
by LR. The contribution of this work was the detailed description of the duality gap
difficulty and the implementation of a new algorithm for updating the Lagrange
multipliers. The paper also presented the UCP formulation in a more visualized way. The
algorithm was adopted to include: pumping units, and probabilistic determination of the
spinning reserve.

R. Nieva et al. [26],1987, presented an algorithm, based on the LR method, to solve
very large and complex UCP in a relatively short CPU time. The approach used the DP in
the successive approximations. The proposed approach gives an estimate of suboptimality
that indicates how close the solution is to the optimum. In contrast to the technique of the
previous LR implementations, this approach makes no attempt of maximizing the dual
function. Hence, the suboptimality estimates are rather conservative, but sufficiently
precise as to render the search-range reduction technique effective.

K. Aoki et al. [27,28], in 1987, presented an efficient approach for solving a more
practical UCP. The algorithm includes three types of units; usual thermal units, fuel
constrained units, and pumped-storage hydro units. For maximizing the Lagrangian
function, a ‘variable metric method’ is tried instead of the subgradient method. Moreover,
a new device for efficiently obtaining a feasible solution is proposed.

In 1988, F. Zhung et al. [28] proposed a LR algorithm for a large scale UCP. A
system of 100 units has been solved efficiently in a low execution time. The algorithm is

divided into three phases. In the first phase, the Lagrangian dual of the unit commitment
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is maximized with standard subgradient techniques. The second phase finds a reserve-
feasible dual solution, followed in phase three by solving the Lagrangian dual of the
economic dispatch problem using a nonlinear programming routine.

J. F. Bard [29], 1988, presented an expanded formulation of the UCP in which
hundreds of thermal units are scheduled on an hourly basis. The model incorporates all
the units and system constraints including ramping and operational status and takes the
form of a mixed integer nonlinear control problem. LR is used to disaggregate the model
into separate subproblems in the generating unit, which are then solved with a nested
dynamic program. The strength of the methodology lies partially in its ability to construct
good feasible solutions from information provided by solving the dual problem. Thus, the
need for branch and bound is eliminated. Computational experience of the algorithm
showed that problems containing up to 100 units and 48 time periods could be solved in a
reasonable time with duality gaps less than 1%.

K. Aoki et al. [30] proposed a method for solving a long-term unit commitment
problem in a large scale power system. Three types of units were considered: usual
thermal units, fuel constrained thermal and pumped storage hydro. The problem was
formulated as a nondifferentiable and nonconvex mixed-integer programming. In this
method, the dual problem is solved while some of the constraints are relaxed. A feasible
solution of the primal problem is then found using the least square method.

In 1989, Sudhir Virmani et al. [31], presented a paper in which they provide an
understanding of the practical aspects of the LR methodology for solving the UCP. The

implementation details of applying the LR method to a realistic problem are introduced.
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In 1991, S. Ruzic et al. [32] presented an algorithm for solving an extended UCP
using the LR. The algorithm includes the transmission capacity limits, regulation reserve
requirements of prespecified group of units, transmission losses and fuel constraints, in
addition to the standard unit commitment constraints. The algorithm is tested for 100
units for a time horizon of 48 hours with promising performance.

C. Wang et al. [33], 1995, proposed an optimal generation scheduling approach
with ramping costs. The unit ramping process is related to the cost of fatigue effect in the
generation scheduling of thermal systems. The system operating cost includes the fuel
cost for the units, start-up and shut-down costs as well as the rotor depreciation during
ramping processes. The LR is proposed for unit commitment and economic dispatch, in
which the original problem is decomposed into several subproblems corresponding to the
optimization process of individual units. The network model is employed to represent the
dynamic process of searching for the optimal commitment and generation schedules of a
unit over the entire study time span.

In 1995, Ross Baldick [34] presented a generalized formulation of the UCP. The
model includes: minimum up/down times constraints, power flow constraints, line flow
limits, voltage limits, reserve constraints, ramp limits, and total fuel and energy limits on
hydro and thermal units. The algorithm is tested to solve a system containing 10 units for
a time horizon of 24 hours.

William L. Peterson et al. [35], 1995, presented a LR algorithm which uses the
maximum capacity constraint method. The algorithm is extended to incorporate unit

minimum capacity constraints and unit ramp rate constraints. The algorithm incorporates



other practical features such as boiler fire-up characteristics and non-linear ramp up
sequences.

S. J. Wang et al. [36], 1995, proposed a new approach based on augmented LR for a
short term generation scheduling problem with transmission and environmental
constraints. In this method, the system constraints are relaxed by using Lagrangian
multipliers, and quadratic penalty terms associated with system load demand balance are
added to the Lagrangian objective function. Then the decomposition and coordination
technique is used, and non-separable quadratic penalty terms are replaced by linearization
around the solution obtained from the previous iteration. The exact convex quadratic
terms of decision variables are added to the objective function as strongly convex,
differentiable and separable auxiliary functions in order to improve the convergence
property.

John J. Shaw [37], 1995, proposed a direct method for security constrained unit
commitment. It accounts for the security constraints in both the dual optimization and the
primal solution stages (direct). This is contrasting with other methods that omit the
security constraints from the optimization stage, and consider them only to construct a
feasible unit commitment schedule (indirect). The algorithm develops a feasible solution
in two stages. The algorithm first solves a dual programming problem in the dual
optimization stage. The solution locates scheduling options that are likely to lead to an
optimal feasible solution. The algorithm then selects a number of these options and
evaluates the cost of each in the primal solution stage. The algorithm assesses the hour-

by-hour cost of each option by solving a series of security constrained economic dispatch
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problems. Upon completion, the algorithm selects the option providing the lowest cost
encountered.

Unlike DP methods, LR methods do not have problems in meeting time dependent
constraints. The method is based on decomposing the problem into simple subproblems
of the individual generating units. Since the optimization of the operation of each unit
during the time horizon is performed separately, there are no dimensionality problems
involved. DP or shortest path algorithms are then used to solve the subproblems of the
individual units. LR methods, however, have problems in modeling plant crew
constraints since they introduce coupling to the units subproblems. Also, due to the
duality gap, discussed before, there is no guarantee of the optimality of the solutions

produced by LR methods.

1.1.3 INTEGER AND MIXED-INTEGER PROGRAMMING

The solution using Integer Programming (IP) and Mixed Integer Programming
(MIP) is based on the Benders approach of partitioning the problem into a nonlinear
economic dispatch problem and a pure-integer nonlinear UCP. The MIP approach [38-45]
solves the UCP by using the Branch and Bound method to reduce the solution search
space systematically through discarding the infeasible subsets. Dual programming is also
suggested for the solution of the thermal UCP. The general solution concept is based on
solving a linear program and checking for an integer solution. If the solution is not
integer, an ordered sequence of continuous linear problems or subproblems are
continuously solved. These problems differ from each other only in that a different

number and type of integer variables are held at fixed integer values. Any such Linear
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program solution, if not integer, constitutes the lower bound on integer solutions in that
subset. The strategy of determining which variables to hold constant is called branching.
MIP methods suffer from the problem of taking large memory and computation time.

In 1978, T. S. Dillon et al. [40] proposed an extended and modified version of
applying branch and bound technique for IP as applied to the UCP. The main
disadvantages of previous implementations of the approach to the UCP are the very long
computation time required and the inadequate treatment of the problem of availability of
units. The main features of the method include its computational practicability for
realistic systems and proper representation of reserves relating to power interchange.

Andre Turgeon [41], 1978, formulated the UCP as a mixed-integer nonlinear
programming problem. The solution method is based on the Bender’s approach in which
the problem is partitioned into a nonlinear and a pure-integer nonlinear programming
problem. The first problem, which represents the economic dispatch problem is not
solved in this algorithm. The second problem, the UCP, is solved by a variational method
and a branch and bound algorithm. The method is considered practical for two reasons.
The first reason is that all the UCP constraints are taken into account. The second reason
is that the method was tested on a network of ten generating units, and the optimal
solution was obtained in a relatively small CPU time.

In 1982, G. S. Lauer [43] proposed an algorithm for solving large scale UCP. The
solution methodology is based on the branch and bound technique. Lower bounds are
obtained by solving an associated nondifferentiable dual optimization problem using a
subgradient method. In this regard, a different nondifferentiable optimization approach

has been used. This approach yields information which turns out to be very valuable in
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generating a near optimal feasible solution and an associated upper bound to the optimal
value. This is done by producing dynamic priority lists which are used to generate a
feasible solution. As a result, it is necessary to examine only a few nodes of the branch
and bound tree in order to obtain agreement of the generated upper and lower bounds to
within a practically acceptable tolerance.

In 1983, A. I. Cohen et al. [44] presented a new approach for solving the UCP
based on branch and bound techniques [44]. The method incorporates time dependent
start-up cost, demand and reserve constraints and minimum up/down constraints. It does
not require a priority ordering of the units. The method can be extended to allow for a
probabilistic reserve constraints.

In 1990, E. Handschin et al. [45] described a method for solving the UCP
considering energy constraints obtained from a long term optimization. The method
solves the problem in two steps. The first step concerns a long term constrained energy
optimization to calculate optimal daily energies for each unit. In the second step the
energy constrained unit commitment is solved considering the short-term constraints and
the optimal daily energies from the first step. The first step is formulated as a MIP
problem using branch and bound algorithm. The second step is solved by the LR. The
feasibility of the presented method is demonstrated by solving a power system of 22

units.

1.1.4 LINEAR PROGRAMMING

Linear Programming (LP) is atool that has yet to reach its full potential in power

system engineering [46]. IP is considered as an extension to LP. LP is used through the
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LR method and Benders decomposition technique in solving the scheduling problem.
Prior to the 1960’s, the application of LP at first was limited to solving the economic
dispatch problem. In the early 1960’s, analytical models were implemented for unit
commitment in order to replace the heuristic priority list method then in use. A mixed
integer model was used through the branch and bound algorithm, while the economic
dispatch problem was incorporated as a subroutine.

In 1985, M. Piekutowski et al. [47] described a method to solve the UCP using a
linear programming method. Linear programming techniques were used to dispatch units
at each time interval to minimize production costover a load peak, or daily or weekly
load cycle. Generator configurations, flow constraints, functional reserve and time-
limited reserve were modeled, with the capability for individual restrictions on any unit.
The major feature of the approach was a specialized linear programming algorithm for
solution of the economic dispatch. The linear programming was designed to accomplish
shifts between different proposed schedules while retaining optimality of successive
dispatch solutions. The linear programming was based on the revised simplex method
because of the ease of programming and the ability to include modifications readily in

this developmental application.

1.1.5 NETWORK FLOW PROGRAMMING

Network flow programming models are described by parameters such as arc cost,
arc capacity, a lower bound and arc gain. These parameters are used to solve the network

programming problem. This approach models the UCP as a network’s shortest path
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problem and solves the problem using a network optimization algorithm [48,49]. The
method is simple, efficient and fast because of exploiting network structures.

In 1988, H. Brannlund et al. [48] applied the nonlinear network flow programming
technique to the scheduling of hydro plants with security constraints. In this work a
nonlinear model for the hydro plant is used. The security constraints are included as a set
of additional nonlinear network type constraints. The resulting large scale mathematical
programming problem is solved using a special reduced gradient algorithm.

In 1992, R. Zhu et al. [49] proposed a new approach for solving the thermal UCP
using the network programming technique. In the proposed formulation network, nodes
represent unit combinations and are connected by arcs. The arc cost includes start-up cost
and unit production cost. Two nodes are designed as the source and the sink. When the
shortest path connecting the source to the sink is found, the optimal unit commitment
schedule observed with various operating constraints can be easily obtained. To reduce
the execution time and required memory storage for nodes, a truncated window and
priority list are used. The EDP is solved using the Lagrangian multipliers method. The

algorithm is applied to solve an example of 61 units in a relatively small time.

1.1.6 PROBABILISTIC METHODS

The assessment of a spinning reserve is an integral part of the UCP [50-56]. Most
of the methods previously explained ignore the probabilistic aspects of system
components. There has been relatively little published material on spinning reserve

requirements in interconnected systems that recognizes the random nature of the system
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components. The basic objective in using a probabilistic technique is to maintain the unit
commitment risk equal to or less than a specified value throughout the day.

In 1990, N. Chowdhury et al. [50] presented a probabilistic technique which can be
used to develop unit commitment schedules for continually changing loads in an
interconnected system configuration for a specified period. This technique that was
designated as the ‘two risk concept’ involves the determination of probabilistic risk at
two different levels. An interconnected system is required to satisfy a Single System Risk
(SSR) in which possible assistance from its neighbors is not taken into account. In
addition, the interconnected system is required to satisfy its Interconnected System Risk
(ISR) in which assistance from its neighbors is considered. The unit commitment should
be such that the unit commitment risk is less than or equal to the specified level. To
achieve that, units have been committed according to a predetermined loading order such
that a specified SSR level is satisfied at the isolated system level and a specified ISR
level is also satisfied at the interconnected level.

In 1991, F. N. Lee et al. [51] presented a new concept of unit commitment risk
analysis which explicitly models the stochastic sequence of events associated with
rescheduling decision. Considering the concept of rescheduling, a stochastic model is
proposed for risk analysis, and this model is illustrated via simulation results.

In 1993, N. Chowdhury [52] presented an energy based technique to assess
spinning reserve requirements in an interconnected system. The proposed technique
responds to unit size and lead time in a direct way. An assistance equivalent unit is
expected to share the load of an assisted system in the event of a capacity outage until

additional units can be brought into the troubled system. The expected energy assistance
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of one system to another will vary with a variation in the assistance equivalent unit and/or
in the lead time of additional generation in the assisted system.

In 1993, M. E. Khan et al. [53] presented an algorithm, based on risk analysis, for
unit commitment in composite generation and transmission systems. A new risk index
designated as the composite system operating state risk is defined, using the probabilities
of these operating states. This risk index can be utilized for system expansion planning
and unit commitment in a composite system.

F. N Lee et al. [54], 1994, presented a multi area unit commitment method based on
the sequential commitment procedures that resembles ‘bidding’. Instead of the linear flow
network representation usually used in muiti area production simulations, the proposed
method employs a dc power flow model to represent the inter area transmission network.

This improved network model adds significant complexity to the muliti area UCP.

1.2 HEURISTIC METHODS

Faced with such a complex problem, most utilities use non-rigorous computer aided
empirical methods known as ‘heuristic methods’ [57-64], which avoid implementing
mathematical programming models and make the unit commitment decisions according
to a pre-calculated priority list, known as the ‘merit order table’ and incorporate all the
operational constraints heuristically.

Heuristic methods have the following advantages: All the operational constraints

are considered and feasible solutions (if there are any) are usually obtained, the solutions
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are economically reasonable, and the computational requirements, in terms of memory
and running time are modest.

The main shortcoming of the heuristic methods is that they cannot guarantee the
optimal solutions, or even provide an estimate of the extent of their sub-optimality.
Therefore, in the heuristic methods a suboptimal solution is obtained due to the
incomplete search of the solution space besides the lack of mathematical proof for
reaching the optimal solution. Some of the popular heuristic methods are: Priority-List,

and Expert Systems based methods.

1.2.1 PRIORITY-LIST

The Priority-List (PL) method [57-59] is one of the basic methods that has been
used to solve UCP. The PL methods mimic the scheduling practices followed by system
operators. The units are sorted in ascending order according to their average full load
cost. The units are then committed according to this priority list, so that the most
economic base load units are committed first and the peaking units last in order to meet
the load demand. PL methods are very fast but they are highly heuristic and give

schedules with relatively high production costs.

1.2.2 EXPERT SYSTEMS

Recently, Expert Systems (ES) have been used in solving the UCP as a mean of
utilizing the expertise of the human operators [60-64]. The ES methods treat the global
optimization problem as a sequence of simpler optimization steps, to the extent that such

treatments can approximate the actual optimization process.
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The basic strategy of using ES to solve the UCP is to use the previous knowledge
of the system to get an optimal or suboptimal schedule for a given load pattern. The
system knowledge could be a data base of different load patterns and the corresponding
schedules solved by an efficient analytical method. The solution steps in the ES methods
can be divided into three phases as follows:
®A load pattern and schedule database is built which contain a number of load
patterns and their associated unit commitment schedules. A starting point
schedule is then obtained for a given load pattern by searching in the data base for
a load pattern that is nearest to that one.

eThe selected schedule is examined for time intervals in which the spinning
reserves are insufficient or surplus. Then, using a PL based optimization strategy,
additional units are committed or decommitted in those time intervals. Both
commitment and recommitment are performed with the minimum up/down time
constraints being preserved.

eA global optimization is performed using additional rules. Then, a search

procedure is performed at different time intervals of the entire time horizon in
order to find out whether some replacement could lead to a more economical

schedule.

1.3 ARTIFICIAL INTELLIGENCE METHODS

The growing interest for the application of Artificial Intelligence (AI) techniques to

power engineering has introduced the potentials of using the state-of-the art in many
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problems in power systems. To offer an alternative to the existing methods, Al techniques
have been applied to solve the UCP [65-74].

Al methods seem to be promising and are still evolving. Currently, four methods
that are perceived as affiliated in some measure with the Al field have gained prominence
as frameworks for solving different problems [65-74]:

eNeural Networks (NN), [65-66],

eSimulated Annealing (SA), [67],

eGenetic Algorithm (GA), [69-74], and

eTabu Search (TS), [None].

GA, NN and TS are inspired by principles derived from biological processes, and
SA is derived from material sciences. These methods need not be viewed competitively,
and they comprise the emergence of promise for conquering the combinatorial explosion
in a variety of decision-making arenas. NN have claimed intriguing successes in pattern-
recognition applications, but have generally performed less than impressively in
optimization settings. SA and GA have the attractive feature of assured convergence
under appropriate assumptions.

In the following section a brief description of the applicability of these methods for

the UCP is presented:

1.3.1 NEURAL NETWORKS
In recent years, NN computing has become an important branch of the AI. NN
represent a new class of computing systems formed by thousands of simulated neurons,

connected to each other in the same way as the brain neurons are interconnected.



Two main approaches have been used to solve the UCP by NN [65-66].

In the first approach, a NN functions as a pattern recognizer and this is achieved by
training the NN using a set of pairs of load pattern and the corresponding optimal
schedule. An optimal or suboptimal schedule is then obtained in the retrieving phase of
the NN operation. This approach is usually used with other methods in the form of hybrid
algorithm to refine the solution output from a NN.

In the second approach, NN are used to solve the optimization problem itself by
formulating the energy function of the NN to include both the objective function and the
constraints of the UCP.

Hiroshi Sasaki et al. [65], 1992, introduced the feasibility of applying the Hopfield-
type NN to solve the UCP. In this approach, the NN gives the on/off states of the units at
each period and then the output power of each unit is adjusted to meet the total demand.
Another feature of the approach is that an ad hoc NN is installed to satisfy inequality
constraints which take into account the standby reserve constraints and the minimum
up/down time constraints. The approach also approximates the output of a running unit
and its fuel usage by a constant, and it is necessary to use existing methods to balance the
supply and demand. The proposed approach has been applied to solve an example of 30
units and 24 hours time periods; results obtained were close to those obtained using the
LR method.

In 1993, M. H. Sendaula et al. [66] proposed a NN approach for solving the UCP.
The approach combines the Hopfield-Tank and Chua-Lin type NN to simultaneously
solve the unit commitment and economic dispatch problems. The approach is based on

imbedding the various economic and electrical constraints of the UCP and EDP in a
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generalized energy function, and then defining the network dynamic in such a way that
the generalized energy function is a Lyupunov function of the artificial NN. The novel
feature of the proposed approach is that the nonlinear programming problem for EDP and
the combinatorial optimization problem for the UCP are solved by one network. The
model includes the spinning reserve and transmission losses but the minimum up/down
constraints are not included. The effectiveness of the model is proven through an example
of six buses and three generators.

Unfortunately up till now, the results of using the NN to solve the UCP are not
superior to the previously used method due to two main drawbacks. The first one is the
problem of entrapment in the local minimum in both two approaches. The second is the
problem size that degrades the training efficiency in the first approach and also slows

down the convergence in the second approach.

1.3.2 SIMULATED ANNEALING

A single paper has been published on solving the UCP using the SA method by
Zhuang and Galiana in 1990 [67]. The method exploits the resemblance between the
annealing of a metal and a minimization process.

In applying the SA, to solve the UCP, the basic idea is to choose a feasible solution
at random and then get a neighbor to this solution. A move to this neighbor is performed
if either it has a better (lower) objective value or, in case the neighbor has a higher
objective function value, if exp(-AE/Cp)=U(0,1), where AE is the increase in objective
value if we move to the neighbor, and Cp is a control parameter (or temperature)

decreased through the search according to a specified schedule. The effect of decreasing
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Cp is that the probability of accepting an increase in the objective function value is
decreased during the search.

In Zhuang’s work [67], the constraints were divided into two categories easy
constraints and difficult ones. The easy constraints were satisfied heuristically during the
process of finding randomly feasible solutions, while the difficult constraints were
penalized in the objective function.

The cooling schedule, used in [67], is the popular one. In this schedule, the control

parameter is decremented by a constant factor, i.e., p=p,p™ and 0<p<I , where m is the
iteration counter. The initial value of Cp is assumed empirically in the range of 100-500,
while the final value of Cp is calculated as function of the problem size and the initial
value of the objective function. The presented results showed that the method can yield
highly near-optimal solutions and can accommodate high size problems and complicated

constraints such as crew and maintenance constraints.

1.3.3 GENETIC ALGORITHMS

Genetic Algorithms have become increasingly popular in recent years in science
and engineering disciplines. In the UCP several papers have been published [69-74]. The
solution coding is the most important point in applying the GA to solve any optimization
problem. Coding could be in a real or a binary form. Coded strings of solutions are called
“chromosomes.” A group of these solutions (chromosomes) are called population.
Moving from one population of chromosomes to a new population is set by selection,
together with a set of genetic operators of cross-over, mutation and inversion. Since the

UCP lends itself to the binary coding in which zero denotes the OFF state and a one
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represents the ON state, all published works used the binary coding. A candidate solution
is a string whose length is the product of the number of generating units and the
scheduling periods.

Fitness function is the second issue in solving the UCP using GA. In the literature
the fitness function is constructed as the summation of the operating costs and penalty
terms for constraints violations.

A basic advantage of the GA solution is that it can be easily converted to work on
parallel computers. A disadvantage of the GA is that, since they are stochastic
optimization algorithms, the optimality of the solution they provide cannot be guaranteed.
However, the results reported indicate good performance of the method.

In 1994, D. Dasgupta et al. [69] presented a paper which discusses the application
of GA to solve the short term UCP. In this work, the problem is considered as a multi-
period process and a simple GA is used for commitment scheduling. Each chromosome is
encoded in the form of a position-dependent gene (bit string) representing the status of
units available in the system, (on/off), ata specific time period. The fitness function is
formulated by using a weighted sum of the objective function, and values of the penalty
function based on the number of constraints violated and the extent of these violations. A
scaled fitness function was used to determine the probability of selection of members in
the population for breeding. To make the algorithm robust in finding near-optimal
solutions, a number of feasible commitments with smaller costs were saved at each time
period.

In 1995, X. Ma etal. [70] presented a new approach based on the GA to solve the

UCP. The coding scheme used was the binary coding. A forced mutation operator was
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adopted to correct the solutions (or chromosomes) that do not satisfy the load demand
and reserve constraints. The fitness function was constructed from the objective function
and penalty terms for constraints violation. Two-point crossover was used. The algorithm
was tested on a ten units example.

S. A. Kazarlis et al. [71], 1996, presented a GA solution to the UCP. The coding
was implemented in a binary form. Fitness function was constructed from the objective
function and penalty terms of constraints violation. A nonlinear transformation was used
for fitness function scaling. Normal GA operators; crossover, mutation, and elitism were
applied. Additionally another set of operators was implemented to apply hill-climbing-
like techniques to the best chromosome of every generation. These set of operators are
swap-mutation, and swap-window hill-climb. Another step taken was the implementation
of a smooth and gradual application of the fitness function penalties that are most
responsible for the complication of the search space. This modification concerns the
replacement of the constant penalty multipliers with functions increasing with the
generation index. With the technique of the varying quality function, the GA finally
manages to locate the exact global optimum. The algorithm is applied successfully on one
hundred units example.

In 1996, P. C. Yang et al. [72] presented a practical approach for using the GA to
solve the UCP. The implemented algorithm deals with the constraints in a different
manner. The minimum up/down time constraints are embedded in the binary
representation inherently needed in the GA. The other constraints are dealt with by
integrating penalty factors into the cost function to consider the constraint violations. The

constraint violation penalty is in an exponential form of the violated percentage to avoid
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missing the schedule with a low cost which just fails to satisfy the constraint because of
numerical round-off error in the computer. To emphasize the strings with better fitness
and to speed up the convergence of the search, the raw fitness function obtained is
normalized to between O and 1 inclusively to obtain the final fitness. The proposed
algorithm, along with SA and LR is applied to solve a Taiwan power system consisting of
38-unit over a 24-hour period. With a reasonable computation time, the cost of the
solution obtained by the GA approach was found to be the lowest among the three
methods (GA, SA and LR).

S. O. Orero [73], 1996, proposed an enhanced GA approach for the UCP. The
major difference between this approach and the previous ones is that it incorporates what
was called ‘a sequential decomposition logic’, to provide a faster search mechanism. The
coding is binary as usual. The fitness function includes penalty functions that are
carefully graded to differentiate between feasible and non feasible solutions, but penalize
the solutions that violate the linking constraints according to the magnitude of violation.
The EDP is solved via a dual revised simplex linear programming algorithm. In this
approach, the selection, mutation, and crossover operators are restricted to a single time
interval. The time intervals are then considered in sequence starting from the first
interval. As the sequence progresses all other variables such as minimum up/down times,
ramp rates and spinning reserve requirements are checked for constraints violation and
penalized accordingly. This method does not strictly partition the problem into single
time spans, but involves a cumulative time span partitioning, in that the linking constraint
parameters such as minimum up/down times and ramp rate limits are continuously

updated and re-evaluated as the time steps increase. An advantage of this approach is that
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any constraints which are already satisfied cannot be violated later in the sequence. The
method is applied to a 26-unit example with better results than a hybrid DP/NN approach.

G. B. Sheble’ et al. [74], 1996, presented a paper to discuss the applicability of the
GA  approach to the UCP and the EDP. The first half of the paper presented the problems
that the author has faced, when applying the GA to the UCP. The two main problems
encountered when using a GA with penalty methods are the crossover operator can
introduce new constraints violations that were not in either parent, and the problem of
selecting penalty values for satisfying the five considered constraints is hopeless. These
two problems resulted in each generation of population members having a similar fitness
or similar unit commitment schedule cost as the preceding generation. In the second half
of the paper an algorithm of solving the EDP using GA is implemented and successfully

tested and compared with the lambda iteration method.

1.3.4 TABU SEARCH

In general terms, Tabu Search (TS) is an iterative improvement procedure in that it
starts from some initial feasible solution and attempts to determine a better solution in the
manner of a greatest-descent algorithm. However, TS is characterized by an ability to
escape local optima (which usually cause simple descent algorithms to terminate) by
using a short-term memory of recent solutions.

No work has been reported so far for solving the UCP by TS. In chapter 4 we will

propose two new algorithms using TS to solve the UCP.
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1.4 HYBRID ALGORITHMS

Hybrid algorithms are also well known techniques for solving engineering
problems. Hybrid algorithms try to make use of the merits of different methods. Hence,
the aim is to improve the performance of algorithms that are based on a single method.
The main objective of proposing an algorithm as a hybrid of two or more methods is to
speed up the convergence and/or to get better quality of solutions than that obtained when
applying the individual methods.

Different hybrid algorithms, used to solve the UCP, are available in the literature
[76-91]. These algorithms consist of two or more of the following methods: Classical
Optimization (e.g. DP, LP, and LR), Heuristics, and Artificial Intelligence, (e.g. NN, and
GA). Various types of hybrid algorithms could be grouped, according to the methods
involved in the implementation of those algorithms, as follows:

e Classical methods, e.g. LP and DP [76-78],

e(Classical and heuristic methods , e.g.

oLP and heuristics methods [79],
¢DP and heuristics methods [80],
e(Classical and Al methods, e.g.
e DP and fuzzy logic methods [81],
¢DP and NN methods [82,83]
LR and NN methods [84]

e Al and heuristics methods [85-91], e.g.

oNN and ES methods [85],



oNN and heuristic methods [86-89],
*GA and ES methods [90],
*GA and PL methods [91]

o Al methods, [None].

In 1981, James G. Waight et al. [76] presented a paper that combines dynamic and
linear programming techniques such that the operational constraints of reserve margins
and ramp rates are optimally met by the resulting generation schedules. A major
advantage of this method is that it can be used to determine the minimum cost of
providing a particular level of reserve or operating with a particular set of ramp rate
capabilities. Such a costing method makes it feasible to make economic decisions on
whether to install new ramming capability. The scheduling problem is formulated as a
two step optimization problem. The first step considers optimal scheduling over a period
of time. In this step the scheduling problem is formulated as a DP problem. The
operational period is divided into stages, and at each stage a number of combinations of
generating units are examined. The second step is performed for each of these
combinations. In this step, the problem is viewed as the EDP of a given set of generating
units subject to reserve margins and other constraints. The EDP is solved using LP with
Dantiz Wolfe decomposition.

In 1984, Hans P. Van Meeteren [77] presented a paper to solve the UCP using DP
and LP approaches. This paper addresses itseif to the UCP subject to constraints in the
fuel supply system. In this work an iterative decoupled approach, based on both a unit

commitment module and a fuel allocation module, has been proposed. In the unit



commitment module a DP approach is used. In addition to that, more heuristics are
introduced by defining a search window to which the actual dynamic search is restricted.
The fuel allocation problem is formulated by using linear or piecewise linear models for
both the fuel supply system and the generating units. LP is used to solve the fuel
allocation problem.

In 1986, G. B. Sheble’ et al. [78] proposed a method to solve the UCP, which is
based on the LP and DP as a decision analysis problem. The main advantage of the
proposed technique is the elimination of solution dependency on a prespecified PL for
unit start-ups or unit shut-downs. A successive approximation in solution space algorithm
is implemented. An initial feasible solution is obtained using any ‘crashing’ method. The
results are used to define a coarse grid over the solution space. Next the load dispatch
problem is solved for each possible transition from a previous solution point. The
combination for the best transition is found and saved for the next stage. After all stages
have been evaluated, the optimal transition is traced from the final stage to the first one.
This process is repeated around the new optimal solution path until the change in
objective function is within tolerance or the grid size is within tolerance. This approach is
very similar to gradient optimization techniques since the neighborhood is first identified
and then small changes are tried to determine if the minimum can be reduced while
maintaining feasibility.

E. Khodaverdian et al. [79], 1986, presented a new method to solve large scale
UCP. The method uses a hybrid algorithm of the discrete decision linear programming
and heuristic techniques. The algorithm is capable of incorporating all the operational

constraints of the system and fully feasible schedules. The algorithm is tested to solve the
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UCP in the South-Western Region subsystem of the CEGB, UK with 74 units. In this
approach, the unit commitment period is divided into a number of smaller equal or
unequal time-intervals, the ends of which are defined as the time-steps. Some heuristic
rules are designed to obtain a single-time-step unit commitment schedule. Then a discrete
decision LP with bounded variables algorithm, based on the revised-simplex method, is
used to solve the single-time-step UCP .

Various heuristics have been introduced in DP in order to reduce its execution time.
The truncated window methodology is one of the schemes that provides a better
compromise between the speed and the closeness of the solution to the optimal value. In
1991, Z. Ouyang et al. proposed a heuristic improvement of the truncated window DP for
the UCP [80]. The proposed algorithm adjusts the window size of the DP according to the
incremental load demands in adjacent hours, and controls the program execution to fine
tune the optimization interactively.

In 1991, Chung-Ching Su proposed [81] a new approach for the UCP under an
expected error in the forecasted load demand. The approach uses a fuzzy DP model in
which the hourly loads, the cost, and system security are all expressed in fuzzy set
notations. The constraints imposed on the system are divided into two groups. The power
generation-load balance and spinning reserve requirements are treated as fuzzy
constraints since they are related to the imprecise (fuzzy) hourly loads. The other
constraints (minimum up/down time, and crew constraints) are still considered to be
crisp. The possible states at each hour are crisp variables. Thus, the fuzzy DP model
includes crisp state variables with some crisp constraints imposed on the states. The

problem is modeled as a fuzzy objective function subject to two fuzzy constraints and two



crisp constraints. The effectiveness of the proposed algorithm is demonstrated by solving
the unit commitment of the Taiwan power system which contains 6 nuclear units and 48
thermal units.

Z. Ouyang et al. [82], 1992, presented a hybrid DP-artificial NN algorithm for the
UCP. The proposed algorithm performed the unit commitment schedule in a two stage
process. In the first stage, a preschedule with a degree of uncertainty is obtained as an
output from a trained NN. Each unit in the schedule will have a certain degree of
uncertainty presented by its probability in the output of NN. A high probability indicates
that the unit is more likely to be committed at the current hour. The NN was trained with
input/output data for most of the typical commitment schedules. A total of 35 training
patterns were used in this study, which are generated by the LR method. In the second
stage, the obtained schedule is refined using a modified DP procedure. The DP
implementation suggested a new method for selecting window units in the truncated
window DP, and new combinations were attempted at stages where uncertain units exit.
The selection of a window is a major step in this approach. The uncertain units are
arranged according to their probability values computed by the NN. Units with the same
probability will be listed according to their priority. Also, in the DP algorithm, to speed
up the solution process and save the memory space, a heuristic policy is used which
limits the number of strategies saved at every stage to be less than or equal to a
predefined value.

In 1995, Ruey-Hsun Liang et al. [83] presented a hybrid artificial NN-differential
DP method for the scheduling of short term hydro generation. In the proposed method,

the DP procedures are performed off-line on historical load data. The results are compiled
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and valuable information is obtained by using NN algorithms. The DP algorithm is then
performed on-line according to the obtained information to give the hydro generation
schedule for the forecasted load. Two types of NN algorithms, supervised and
unsupervised learning is employed and compared in this paper. The effectiveness of the
algorithm is demonstrated by the short term hydro scheduling of the Taiwan power
system which consists of ten hydro plants.

In 1995, Adly A. Girgis et al. presented a paper of two parts [84]. The first part
shows the application of artificial NN to load forecasting using new input-output models.
The second part utilizes the results from the first part in the unit commitment. Two types
of load forecasting, hourly and daily load forecast, are addressed. The results provide
both the unit commitment schedule and the power generation for each unit using
economic dispatch. The unit commitment problem was solved based on the principle of
the Lagrangiane method. The unit commitment is based solely on economic dispatch and
generator capacities.

Z. Ouyang et al. [85], 1992, proposed a short term unit commitment which employs
a multi-stage NN-ES approach to achieve real time processing results. The operating
constraints are presented as heuristic rules in the system where a feasible solution is
obtained through inference. The NN are used as a pre-processor and post-processor
stages. At the preprocessor stage, a load pattern matching scheme is performed to retrieve
an existing optimal schedule from the database which would represent the closest
solution to the given load profile. At the post-processor stage, a trained NN performs
considerable adjustments to the optimal solution. The proposed approach performs the

unit commitment in three steps. In the first step, an initial schedule is obtained by
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applying the forecasted load pattern to the trained NN. In the second step, an ES
approach examines the selected schedule for the time intervals for which spinning
reserves are insufficient. Then, using the PL additional units are committed to satisfy the
spinning reserve constraints. In the third step, the resulted schedule of the last step is
refined by applying it to the NN as an input and possible unit replacements are listed in
the output which may further reduce the overall operating cost.

In 1993, C. Wang, et al. [86] proposed an algorithm to consider the ramp
characteristics in starting up and shutting down the generating units as well as increasing
and decreasing power generation. The proposed algorithm employs NN and some
heuristic rules. These steps are used to complete the task of generation scheduling. First,
the ramping constraints in the unit commitment are relaxed. A NN is used to generate a
possible unit commitment schedule and a heuristic procedure is employed to modify the
unit commitment to achieve a feasible and near optimal solution. Then, a dynamic
adjusting process is adopted for the resulting schedule in order to incorporate the ramping
constraints. Finally, a dynamic dispatch is performed to obtain a suitable unit generation
schedule. A system with 26 thermal units is used to demonstrate that the method is very
fast and can generate satisfactory results.

Wong et al. [87], 1990, has developed an artificial intelligence based algorithm for
scheduling thermal generators for run-up-to-peak period. Later, in 1991, they extended
the algorithm to cover a 24-hour scheduling horizon [88]. The algorithm is based on the
heuristic-guided depth-first search framework. In the algorithm, the scheduling problem
is represented as a search in a problem space that spans the set of all possible actions. To

overcome the immense size of the problem, search heuristics are provided to the system
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to identify and select promising actions that would lead to more economical schedules.
The accompanied application study demonstrates that the use of such simple but
appropriate heuristics has been effective in reducing the problem to a manageable size,
and directing searches towards more economical solutions.

K. Doan and K. P. Wong [87,88], 1995, extended the above work by developing a
new scheduling system named search heuristic acquisition program by explanation
simplification (SHAPES). SHAPES is a machine learning system capable of acquiring
heuristics automatically, alleviating the need for heuristics to be manually provided, as in
the previous system. This learning ability also allows the new system to adapt from one
situation to another, by learning different sets of heuristics when dealing with load
demands of different characteristics. The paper also describes methods of training and
evaluating the effectiveness of the learning sub-system in improving search efficiency, as
well as determining the performance of SHAPES in relation to the original scheduling
algorithm.

In 1994, Gerald B. Sheble’ et al. [90] presented a genetic-based UCP algorithm.
The algorithm uses the ES s to satisfy some of the UCP constraints. The advantage of the
algorithm is that the EDP routine is only used with the initialization and mutation
subroutines. Since the mutation is a technique that changes a small percentage of the
on/off status of the generating unit schedule, the only times ED is needed is for the hours
where a mutation has occurred. An adaptive mutation operator is used. In early
generations the members of the population are very distinctive, and do not need mutation.
In later generations when the GA is locating good solutions, a method is needed to keep

finding better solutions in these areas.
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In 1995, S. O. Orero et al. [91] proposed an algorithm to incorporate a PL scheme
in a hybrid GA to solve the UCP. In the GA coding process, the solution string length is

the product of the scheduling period T, and the number of generating units N.

Accordingly, the search space of the GA is then equal to 2™ which is a very large
number. Due to this problem, a premature convergence of the GA search has occurred. To

counteract this problem, a method of decomposition was proposed to limit the GA search

space to 2N This method sequentially solves the scheduling problem by limiting the GA
search to one time interval as the search progresses with the unit minimum up/down
constraints observed, while preserving the solutions already obtained earlier on in the
search. The method uses the previous interval solution as a member of the starting
population in a current time step. The PL algorithm is used to generate a schedule for
each hour, which is then copied to the initial population of the GA for that hour. The
algorithm is applied for two systems of 10 and 110 units. The obtained results are found

to be superior to that obtained using the PL and the GA algorithms as individuals.

1.5 THESIS MOTIVATIONS AND CONTRIBUTIONS

1.5.1 THESIS MOTIVATIONS

Considering the previous discussions, several optimization techniques have been
applied to the solution of the UCP. They range from heuristic approaches to the more
sophisticated ones. Because of its nonconvex and combinatorial nature, the UCP is
difficult to solve by conventional programming methods. Artificial Intelligence (Al)

techniques, unlike strict mathematical methods, have the apparent ability to adapt to
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nonlinearities and discontinuities commonly found in power systems. In recent years Al
techniques have captured interest in many fields of electric power engineering and this
trend is likely to continue. The emergence of massively parallel computer made these
algorithms of practical interest. The best known algorithms in this class include evolution
programming, GA, simulated annealing, tabu search, and NN.

The motivation of this work was the success of the Al to solve many complex
power systems problems and the aim of extending this to the optimal scheduling of power
generating systems. Consequently, the objective of this work is to propose new Al-based
algorithms to solve the UCP. The proposed methods for solution are as follows:

1- Simulated Annealing,

2- Tabu Search,

3- Genetic Algorithms, and

4- Hybrid Algorithms of the aforementioned methods.

Additional motivations of this work, as previously demonstrated, was the lack of
papers that have been published in the application of Al techniques to solve the UCP [65-
74]:

eOnly one paper has been published about the solution of the UCP by Simulated
Annealing [67].

eSome works about the solution of the UCP by Genetic Algorithms have been
published [69-74].

eNo work has been done in the application of Tabu Search to the UCP.
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work has been done in the hybrid algorithms based on the Al methods solely as

applied to the UCP

1.5.2 THESIS CONTRIBUTIONS

In brief, to achieve our objectives in this thesis of getting superior solutions than

those obtained by other methods in the literature, the following contributions are

achieved:

@

(i)

Some new modifications to the existing problem formulation has been made.
In this regard the relation between the binary variables is clearly stated in an
augmented form. The new formulation is generalized and amenable to solution
by both the classical and AI methods.

An efficient nonlinear programming routine to solve the EDP has been
implemented. Solving the EDP is very crucial for achieving good resuits in the
UCP. An original linear complementary algorithm to solve the EDP is
introduced in this thesis. The proposed algorithm is proved to be fast and also
more accurate than an IMSL quadratic routine that has been attempted in the

first stages of this work.

(iii) New rules for generating randomly feasible solutions are proposed. A first step

in solving combinatorial optimization problems is to have good rules for
finding feasible trial solutions from an existing feasible solution. The trial
solutions should be randomly generated, feasible, and span as much as possible
the entire problem solution space. A major contribution of this work is the

implementation of new rules to generate faster randomly feasible solutions.
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(iv) Four new algorithms for solving the UCP are proposed and are listed as
follows:
e A Simulated Annealing Algorithm [68,126],
e A Simple Tabu Search Algorithm,
e An Advanced Tabu Search Algorithm, and
e A Genetic Algorithm with local search [75].
(v) Three new hybrid algorithms for solving the UCP are also proposed and are
listed as follows:
e A hybrid of Simulated Annealing and Tabu Search algorithms [93].
e A hybrid of Genetic and Tabu Search Algorithms.
e A hybrid of Genetic, Simulated Annealing and Tabu Search

Algorithms [92].

1.6 THESIS ORGANIZATION

This thesis consists of nine chapters and three appendices organized as follows:

In chapter 2, the problem formulation is presented. Efficient new rules for randomly
generating trial feasible solutions are also proposed. The implementation of the proposed
linear complementary algorithm to solve the economic dispatch problem is detailed.

In chapter 3, a new implementation of a Simulated Annealing Algorithm (SAA) to
solve the UCP is proposed. The combinatorial optimization subproblem of the UCP is

solved using the proposed SAA while the EDP is solved via a quadratic programming
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routine. Two different cooling schedules are implemented and compared. Three examples
are solved to test the developed computer model.

In chapter 4, we propose two new algorithms, based on the TS method, for the
UCP. The first algorithm uses the short term memory procedure, while the second
algorithm is based on advanced TS procedures. Different criteria for constructing the tabu
list restrictions for the UCP are implemented and compared. Results of both algorithms
along with a comparison of the results reported in the literature for the three solved
examples are presented.

In chapter 5, an overview of the GA method is presented. The new proposed
implementations of the GA as applied to solve the UCP along with the description of
different GA components are presented. The detailed description of a local search
algorithm that has been used to improve the performance of the GA is introduced. The
computational results along with a comparison with previously published work are
presented.

In chapter 6, we propose three different new hybrid algorithms for the UCP. The
proposed hybrid algorithms integrate the use of the three previously introduced
algorithms, SAA, TSA, and GA. The bases of hybridization of these algorithms are
completely new ideas and are applied to the UCP for the first time. These algorithms are
a hybrid algorithm of both SA and TS methods, a hybrid algorithm of GA and TSA and a
hybrid algorithm integrating the three methods; SA, TS, and GA.

Chapter 7 is intended for the comparison between results of the seven proposed

algorithms as well as the available results of other methods (LR, and IP ) in the literature.
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In chapter 8, for the aim of testing and emphasizing the effectiveness of the
proposed algorithms presented in the last chapters, two of the proposed algorithms are
applied to solve a real power system. The selected sample of data is extracted from the
Saudi Consolidated Electric Company in the Eastern Province (SCECO-East).
Considering the performance of the proposed algorithms discussed in the last chapters,
the SA (as one of the individual methods) and the GT (as one of the hybrid techniques)
algorithms have been selected. Modified versions of the two algorithms (ST and GT) are
implemented to suit the selected practical system data.

Conclusions and recommendation for future research work in the UCP are
presented in chapter 9.

Appendix A presents the details of the proposed nonlinear programming routine for
solving the EDP.

Appendix B details the proofs of the SA method equations.

The data of the three systems extracted from the literature and used to demonstrate

the effectiveness of the suggested techniques are shown in Appendix C.

1.7 SUMMARY

This chapter has introduced the definition of the unit commitment and the economic
dispatch problems.

A survey of the methods which have been used for solving the UCP is presented.
These methods have been divided into four major categories: classical optimization

methods, heuristic methods, artificial intelligence methods, and hybrid algorithms. A
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summary of the contributions that have been achieved by the different methods along
with a short description of these methods are presented.

The thesis motivation and the thesis organization have been presented.

The next chapter presents the problem formulation, proposed new rules of
generating trial solutions, and a new algorithm for solving the economic dispatch

problem.
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CHAPTER TWO

PROBLEM STATEMENT,

NEW RULES FOR GENERATING TRIAL

SOLUTIONS AND

NEW ECONOMIC DISPATCH ALGORITHM

2.1 INTRODUCTION

The Unit Commitment Problem (UCP) is the problem of selecting the generating
units to be in service during a scheduling period and for how long. The committed units
must meet the system load and reserve requirements at minimum operating cost, subject
to a variety of constraints. The Economic Dispatch Problem (EDP) deals with the optimal
allocation of the load demand among the running units while satisfying the power balance

equations and units operating limits [1].
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The solution of the UCP using artificial intelligence techniques requires three major
steps:

1. A problem statement or, system modeling,

2. Rules for generating trial solutions, and

3. An efficient algorithm for solving the EDP.

Problem Statement: Modeling of power system components affecting the
economic operation of the system is the most important step when solving the UCP. The
degree of details in components modeling varies with the desired accuracy and the nature
of the problem under study. The basic components of a power system include generating
power stations, transformer, transmission network, and system load.

This work is concerned with thermal generating units scheduling. Hence it is
assumed that the network is capable of transmitting the power generated to the load
centers without neither losses nor network failures. This means that the network is
assumed to be perfectly reliable. Consequently, the following basic engineering
assumptions are made[1-3]:

eThe network interchange between the system under study and other systems is
fixed.

¢The load demand is not affected by adding or removing generating units.

oeThe operating cost of a generating unit is assumed to be composed of three
components; start-up cost, spinning (no load) cost, and production (loading)

cost.
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In the UCP under consideration, one is interested in a solution which minimizes the
total operating cost during the scheduling time horizon while several constraints are
satisfied [20]. The objective function and the constraints of the UCP are described in

Sections 2.2 and 2.3.

Rules for generating trial solutions: The corner stone in solving combinatorial
optimization problems is to have good rules for generating feasible trial solutions starting
from an existing feasible solution. The trial solutions (neighbors) should be randomly
generated, feasible, and span as much as possible the entire problem solution space.
Because of the constraints in the UCP, this is not a simple matter.

A major contribution of this work is the implementation of new rules to generate
randomly feasible solutions faster [68]. In Section 2.4 we present these new rules with the

help of illustrative examples.

The Economic Dispatch Problem: The economic dispatch problem is an essential
problem when solving the UCP. Once a trial solution is generated, the corresponding
operating cost of this solution is calculated by solving the EDP. Consequently, using an
efficient and fast algorithm for solving the EDP improves the quality of the UCP
solution, and therefore, the performance of the overall UCP algorithm.

In Section 2.6 an efficient algorithm for solving the EDP is presented. The method

is based on Kuhn-Tucker conditions and is called the linear complementary algorithm.
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The application of the linear complementary algorithm to solve the EDP is original.
Our investigation showed that the results obtained by this algorithm are more accurate

than those obtained using an IMSL quadratic programming routine.

2.2 THE OBJECTIVE FUNCTION

2.2.1 THE PRODUCTION COST

The major component of the operating cost, for thermal and nuclear units, is the
power production cost of the committed units. The production cost is mainly the cost of
fuel input per hour, while maintenance and labor contribute only to a small extent.
Conventionally the unit production cost is expressed as a quadratic function of the unit

output power as follows:

Fit(Pt) = AiP%t +BiPt +C;i $/HR 2.1

2.2.2 THE START-UP COST

The second component of the operating cost is the start-up cost. The start-up cost is
attributed to the amount of energy consumed to bring the unit “ON” line. The start-up
cost depends upon the down time of the unit. This can vary from maximum value, when
the unit is started from cold state, to a much smaller value, where the unit was recently
turned off.

Calculation of the start-up cost depends also on the treatment method for the
thermal unit during down time periods. There are two methods for unit treatment during

the OFF hours; the cooling method and the banking method.
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The former method allows the boiler of the unit to cool down and then reheat back
up to the operating temperature when recommitted on line.

In the latter method, the boiler operating temperature is maintained during the OFF
time using an additional amount of energy.

The cooling method is used in the present work, due to its practicability when
applied to real power systems. In this work, the start-up cost, for a unit i at time t, based
on the cooling method, is taken in a more general form as follows [41]:

STit = Soi[1-Diexp(-Toff; / Tdown;)] +Ei $ (2.2)

Accordingly, the overall operating cost of the generating units in the scheduling

time horizon (i.e. objective function of the UCP) is

4

T
FT = z Z (UltFlt(Plt) + VitSTit + WitSHit) b (23)
t=1i=1

2.3 THE CONSTRAINTS

The unit commitment problem is subject to many constraints depending on the
nature of the power system under study. The constraints which are taken into
consideration in this work, may be classified into two main groups: system constraints

and unit constraints.

2.3.1 SYSTEM CONSTRAINTS

The system constraints, sometimes called coupling constraints, include also two

categories: the load demand and the spinning reserve constraints.
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1- LoAD DEMAND CONSTRAINTS

The load demand constraint is the most important constraint in the UCP. It
basically means that the generated power from all committed units must meet the system

load demand. This is formulated in the so called balance equation as follows:

N
YUitPt =PDt ;1<t<T 2.9

i=1
2- SPINNING RESERVE CONSTRAINT
The spinning (operating) reserve is the total amount of generation capacity
available from all units synchronized (spinning) on the system minus the present load
demand. It is important to determine the suitable allocation of spinning reserve from two
points of view: the reliability requirements and the economical aspects.
There are various methods for determining the spinning reserve [1,20,34,52]:
e The reserve is computed as a percentage of the forecasted load demand, or
o[t is determined such that the system can make up for a loss of the highest
rating unit in a given period of time, or
eDetermination of the reserve requirements as a function of the system
reliability which is evaluated on a probabilistic basis.
In this work, the reserve is computed as a given prespecified amount which is a

percentage of the forecasted load demand, i.e.

N
Y UiPmax; 2 (PDt +Rt); 1<t<T 2.5)

i=1



2.3.2 UNIT CONSTRAINTS

The constraints on the generating units ( sometimes called local constraints) are

described as follow:

1- GENERATION LIMITS

The generation limits represent the minimum loading limit below which it is not
economical to load the unit, and the maximum loading limit above which the unit should
not be loaded.

UiPmini <Pt <PmaxiUi ; 1<t<T,1<i<N (2.6)

2- MiNntMum Up/DowN TIME

If the unit is running, it can not be turned OFF before a certain minimum time

elapses. If the unit is also down, it can not be recommitted before a certain time elapse.

Toffj 2 Tdowni

; 1<i<N 2.7
Toni 2 Tupi 2.7)

These constraints could be formulated in a mathematical form as follows:

Tupi -1
> Uit+ ZVrtTupi; 1<t<T,1<i<N (2.8)
=0
Tdown. -1 .
2 (1=Uits1) = Wit Tdown; 5 1<t<T,1<i<N (2.9)
I=0
Vit 2 Uit —Uit-1 ; 2<t<T,1<i<N (2.10)
Wit 2 Uit-1 - Uit ; 2<t<T,1<i<N .11)
Vi1 =Ui1 ; 1<i<N (2.12)

Wit =1-Ui1 ; 1<i<N (2.13)
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3- UNITS INITIAL STATUS CONSTRAINT

The status of unit (e.g. hours of being ON or OFF) before the first hour in the
proposed schedule is an important factor to determine whether its new status violates the
minimum up/down constraints. Also, the initial status of the unit affects the start-up cost

calculations.

4- CREW CONSTRAINTS

If the plant consists of two or more units, they can not be turned ON at the same

time due to some technical conditions or man power availability.

5- UNIT AVAILABILITY CONSTRAINT

Due to some abnormal conditions, e.g. forced outage or maintenance of a unit, the
unit may become unavailable. The unit may also be forced in service to increase
reliability or stability of the system, hence the unit becomes must run or fixed at a certain
output. Otherwise the unit is available. The availability constraint specifies the unit to be
in one of the following different situations; wunavailable, must run, available, or fixed
output (MW).

6- UNITS DERATING CONSTRAINT

During the life time of a unit its performance could be changed due to many
conditions, e.g. aging factor, the environment, etc. These conditions may cause derating
of the generating unit. Consequently, the unit maximum and minimum limits are

changed.
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2.4 PROPOSED NEW RULES FOR GENERATING TRIAL SOLUTIONS

One of the most important issues in solving combinatorial optimization problems is
generating a trial solution as a neighbor to an existing solution. The neighbors should be
randomly generated, feasible, and span as much as possible the entire problem solution
space. In the course of generating feasible solutions, the most difficult constraints to
satisfy are the minimum up/down times.

The proposed rules [68] applied to get a trial solution as a neighbor of an existing
feasible solution are described, with the help of an example, in the following steps. The
following values are assumed: T=12, Tup;=2 or 4 and Tdown; =1 or 4.

Step (1): Generate randomly a uniti, i ~UD(1,N), and an hourt, t~UD(1,T). Fig.(2.1)
shows the status of some unit i over a period of 12 hours. The unit is ON
between the periods 5 and 8 inclusive.

Step (2): If unit i at hour t is ON, (e.g. 5,6,7 or 8 in Fig.(2.1) ), then go to Step (3) to
consider switching it ON around time t.

Otherwise, if unit i at hour t is OFF, (e.g. 1,2,3,4,9,10,11 or 12), then go to
Step (4) to consider switching it OFF around time t.

Step (3): Switching the unit i from ON to OFF

a- Move from the hour t backward and forward in time, to find the length of
the ON period.
In this example if t=6, then Ton;=8-5+1=4, and the unit is ON during hours
5,6,7,8.

b- If Ton;=Tup;, then turn the unit OFF in all hours comprising Ton;.
In the example if Tup;=4, then switch the unit OFF at t=5,6,7,8 (Fig.2.2-a).

c- If Ton;>Tup;, then generate L ~ UD(1, Ton;- Tup;).

d- Turn the unit OFF for the hours t1,t1+1,....t1+L-1, where t1 is the first hour
at which the unit is ON.
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In the example if Tup;=2, then L~UD(1,2). Hence, the following two

solutions are possible:

if L=1, then the unit is turned OFF at t=5 (Fig.(2.2-b)), and

if L=2, the unit is turned OFF at t=5,6, (Fig.(2-.2-c)).
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Fig. (2.1) and (2.2): Illustrative example for the rules of generating trial solutions

Step (4): Switching the uniti from OFF to ON

a- Move from the hour t backward and forward in time, to find the length of
the OFF period.
In the example if t=10, then Toff,=12-9+1=4, the unit is OFF during hours

9,10,1

1,12.

b- If Toff,=Tdown;, then turn the unit ON in all hours of Toff;.

In the example if Tdown;=4, then switch the unit ON at t=9,10,11,12
(Fig.2.3-a).
c- If Toff,> Tdown;, then generate L ~ UD(1, Toff;- Tdown; ).
d- Turn the unit ON for the hours t3,t3+1,t3+2,....t3+L-1, where t3 is the first
hour at which the unit is OFF.

In the example if Tdown;=1, then L~UD(1,3). Hence, the following three

solutions are possible:
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if L=1, then the unit is turned ON at t=9 (Fig.(2.3-b)),
if L=2, the unit is turned ON at t=9,10 (Fig.(2.3-c)), and
if L=3, the unit is turned ON at t=9,10,11 (Fig.(2.3-d).

Step (5): Check for reserve constraints
Check the reserve constraints satisfaction for the changed time periods in Steps
(3) and (4). If it is satisfied, then the obtained trial solution is feasible,

otherwise go to Step (1).
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Fig. (2.3): Illustrative example for the rules of generating trial solutions

2.5 GENERATING AN INITIAL SOLUTION

Solving the UCP using any combinatorial optimization algorithm requires a starting
feasible schedule. The generated starting solution must be randomly generated and
feasible. The following algorithm is used for finding this starting solution [68]:

Step (1): Set U=V=P=0, t=1.
Step (2): Do the following substeps :
a- Generate randomly a unit i, i ~ UD(1,N).
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b- If the unit i at hour tis OFF (U;=0), then go to Step (3). Otherwise go to
Step (2-a) to choose another unit.
Step (3): Follow the procedure in Step (4), in Section 2.4, to consider switching this unit
ON starting from hour t.
Step (4): If t=T, go to Step (5), otherwise set t=t+1 and go to Step (2).
Step (§): Check the reserve constraints for all hours. Repeat Steps (2) and (3) for the

hours at which the constraints are not satisfied.

2.6 ANEW ALGORITHM FOR THE ECONOMIC DISPATCH PROBLEM

The EDP is the heart of any algorithm used to solve the UCP. To get the objective
function of a given trial solution we have to solve the EDP. The accuracy and speed of
convergence for the selected routine to solve the EDP is crucial in the efficiency of the
overall UCP algorithm.

Since the production cost of the UCP, formulated in Section 2.2, is a quadratic
function, the EDP is solved using a quadratic programming routine. In this section we
present an efficient algorithm for solving the EDP. The method is based on Kuhn-Tucker
conditions and is called the linear complementary algorithm [6].

The application of the linear complementary algorithm to solve the EDP is new. It
is an efficient and fast algorithm for solving the quadratic programming problems. In this
algorithm the Kuhn-Tucker conditions are solved as a linear program problem in a
tableau form. In the early stages of this research, some experiments were performed to
test the proposed linear complementary algorithm. We found that the results obtained by
this algorithm are more accurate than those obtained using an IMSL quadratic

programming routine.
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In brief, the EDP for a one hour in the scheduling time horizon could be formulated

as the minimization of the summation of production costs of the committed units in this

hour subjected to the load demand and unit limits constraints as follows:

N
Minimize Y Fit(Pt) = AiP%t +BiPt + Ci $/HR (2.14)
i=1
subject to:
N
SPy=PDt ;1<t<T (2.15)
i=1
and
Pminij <Pt <Pmax; ;1<t<T, 1<i<N (2.16)

The theoretical basis of the linear complementary algorithm is presented in
Appendix A. The detailed reformulation of the EDP as a linear complementary problem

is described in the following section.

2.6.1 THE ECONOMIC DISPATCH PROBLEM IN A LINEAR

COMPLEMENTARY FORM

The economic dispatch problem is generally a nonlinear programming problem. If
the production cost functions of the generating units are taken in a quadratic form, then
the problem can be formulated as a quadratic programming problem. Accordingly the
linear complementary algorithm could be used to solve the Khun-Tucker conditions of
this problems as proved in Appendix A.

The original formulation of the EDP, as described in equations (2.14), (2.15) and

(2.16), could be written, for a single time period, in a simple form as follows:
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N
Minimize Y Fi(pi) = Aip? +Bip; + Ci $/HR (2-17)
i=1
subject to:
N
Ypi=PD (2-18)
i=1
and
mi SPi<Xi ; 1<i<N (2-19)

where mj and X; are the lower and upper limits of unit i respectively.

For a system of N generating units, the number of constraints is 2N inequality
constraints and one equality constraint. These constraints can be reduced to only N+1
constraints, hence the tableau size and the computation effort will also be reduced. The
reduction is done by defining new variables to cancel one of the sides (upper or lower) of
the inequality constraints as follows:

Let p'i=pi—m;j (2-20)

then pi =p'i+m;, (2-21)

substituting form (2-21) in (2-17), (2-18) and (2-19) the EDP problem is

reformulated as follows:
N
Minimize Y Fi(p')=A'ip?+B'ip'i+C' $/HR (2-22)
i=1
subject to:

y[,p'i =PD' (2-23)

i=1

pi<xi ;1<i<N (2-24)
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pi=0;1<i<N (2-25)
where

X'i=Xi —mj (2-26)
N

PD'=PD- > m; (2-27)
i=1

Ali=A; (2-28)

B'i = 2miA; +B; (2-29)

C'i= Am'2+Bim + C; (2-30)

Accordingly, the number of constraints are one equality constraint (equation (2-23))
and N inequality constraints (equation (2-24)), in addition to the nonnegativity constraints
of the new N variables p'i’s.

Now an analogy between the reduced formulation of the EDP and the quadratic

programming formulation, described in Section A-2, could be stated as follows:

A'sH (2-31)
B'ec (2-32)
Xeb (2-33)
Unit matrix <> A (2-34)

Using the problem formulation (2-22) to (2-25) and the analogy equations (2-31) to
(2-34), the EDP is solved using the linear complementary algorithm described in Section

A.l4.
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2.6.2 TABLEAU SIZE FOR THE ECONOMIC DISPATCH PROBLEM

Considering the modified formulation of the EDP, the number of constraints is
reduced by N, where N is the number of variables or the number of committed generating
units. Consequently, the tableau size of the EDP in the linear complementary formulation
is as follows:

Let N is the number of variables (generating units outputs).

Since we have N constraints as the upper limits on the generating units, and one
constraint of the load demand, then L=N+N+1=2N+1

The tableau size is then L x 2L+2)=(2 N+ 1) x (4 N +4).

Accordingly, the tableau Size for our solved examples are as follows:

For the 10-units example, N=10, the tableau size is 21 x 44.

For the 26-units example, N=26, the tableau size is 53 x 108.

For the 24-units example, N=24, the tableau size is 49 x 100.

2.7 SUMMARY

This chapter presented three different subjects: the problem statement, rules for
generating trial solutions, and a new algorithm for solving the economic dispatch
problem.

In the problem statement the objective function and the constraints of the UCP are
formulated in a more generalized form.

New rules for generating trial feasible solutions are proposed.
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An original application of the linear complementary algorithm for solving the EDP
is also discussed.
The next Chapter presents the first proposed algorithm to solve the UCP. This

algorithm uses the simulating annealing method.
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CHAPTER THREE

A SIMULATED ANNEALING ALGORITHM FOR

UNIT COMMITMENT

3.1 INTRODUCTION

Annealing is the physical process of heating up a solid until it melts, followed by
cooling it down until it crystallizes into a state with a perfect lattice. During this process,
the free energy of the solid is minimized. Practice shows that the cooling must be done
carefully in order not to get trapped in a locally optimal lattice structure with crystal
imperfections. In combinatorial optimization, we can define a similar process. This
process can be formulated as the problem of finding-among a potentially very large
number of solutions- a solution with minimal cost. Now, by establishing a
correspondence between the cost function and the free energy, and between the solutions
and physical states, we can introduce a solution method in the field of combinatorial
optimization based on a simulation of the physical annealing process. The resulting
method is called Simulated Annealing (SA). The salient features of the SA method could

be summarized as follows [94-104]:
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o It could find a high quality solution that does not strongly depend on the choice of the
initial solution.

e [t does not need a complicated mathematical model of the problem under study.

e [t can start with any given solution and try to improve it. This feature could be
utilized to improve a solution obtained from other suboptimal or heuristic methods.

e [t has been theoretically proved to converge to the optimum solution [94].

e It does not need large computer memory.

In this chapter we propose a new implementation of a Simulated Annealing
Algorithm (SAA) to solve the UCP. The combinatorial optimization subproblem of the
UCP is solved using the proposed SAA while the EDP is solved via a quadratic
programming routine. Two different cooling schedules are implemented and compared.
Three examples are solved to test the developed computer model.

In the next section, a general description of the SA method is presented, followed in
Section 3.3, by the description of the cooling schedules. Section 3.4 presents the detailed
description of the proposed SAA to solve the UCP. Section 3.5 is intended for the
comparison between the obtained results and others as reported in the literature [67]. In
Section 3.6 the computational results along with a comparison with previously published

work are presented.
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3.2 SIMULATED ANNEALING METHOD

3.2.1 PHYSICAL CONCEPTS OF SIMULATED ANNEALING

Simulated Annealing, was independently introduced by Kirkpatrick, Gela and
Vecchi in 1982 and 1983 [96] and Cerny in 1985 [97]. Annealing , physically refers to
the process of heating up a solid to a high temperature followed by slow cooling achieved
by decreasing the temperature of the environment in steps. At each step the temperature is
maintained constant for a period of time sufficient for the solid to reach thermal
equilibrium. At equilibrium, the solid could have many configurations, each
corresponding to different spins of the electrons and to a specific energy level.

At equilibrium the probability of a given configuration, Py, is given by
Boltzman distribution; Pegntg =K-exp(-Econsg / CP) , Where Egyqgq is the energy of the given
configuration and K is a constant [98].

Metropolis et al. [99], proposed a Monte Carlo method to simulate the process of
reaching thermal equilibrium at a fixed temperature Cp. In this method, a randomly
generated perturbation of the current configuration of the solid is applied so that a trial
configuration is obtained. Let E. and E; denote the energy level of the current and trial
configurations, respectively. If E_> E;, then a lower energy level has been reached, and
the trial configuration is accepted and becomes the current configuration. On the other
hand, if E, <E; then the trial configuration is accepted as the current configuration with
probability exp[(E. -E)/Cp].

The process continues where a transition to a configuration of higher energy level is

not necessarily rejected. Eventually thermal equilibrium is achieved after a large number
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of perturbations, where the probability of a configuration approaches Boltzman
distribution. By gradually decreasing Cp and repeating Metropolis simulation, new lower
energy levels become achievable. As Cp approaches zero, the least energy

configurations will have a positive probability of occurring.

3.2.2 APPLICATION OF SA METHOD TO COMBINATORIAL

OPTIMIZATION PROBLEMS

By making an analogy between the annealing process and the optimization
problem, a great class of combinatorial optimization problems can be solved following
the same procedure of transition from an equilibrium state to another, reaching the
minimum energy level of the system. This analogy can be set as follows [98]:

e Solutions in the combinatorial optimization problem are equivalent to states
(configurations) of the physical system.

¢ The cost of a solution is equivalent to the energy of a state .

e A control parameter, Cp, is introduced to play the role of the temperature in the
annealing process.

In applying the SAA to solve the combinatorial optimization problem, the basic
idea is to choose a feasible solution at random and then get a neighbor to this solution. A
move to this neighbor is performed if either it has a lower objective function value or, in
case of higher objective function value, if exp(-AE/Cp)2>U(0,1), where AE is the increase
in the objective function value if we moved to the neighbor. The effect of decreasing Cp
is that the probability of accepting an increase in the objective function value is decreased

during the search.
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The most important part in using the SAA is to have good rules for finding a

diversified and intensified neighborhood so that a large amount of the solution space is

explored.

Another important issue is how to select the initial value of Cp and how it

should be decreased during the search.

3.2.3 A GENERAL SIMULATED ANNEALING ALGORITHM

A general SAA can be described as follows [94-104]:

Step (0):

Step (1):

Step (2):

Step (3):

Step (4):

Step (5):

Initialize the iteration count k=0 and select the temperature, Cp=Cp,, to be
sufficiently high such that the probability of accepting any solution is close to
1.

Set an initial feasible solution = current solution, X;, with corresponding
objective function value E;.

If the equilibrium condition is satisfied go to Step (5), else execute Steps (3)
and (4)

Generate a trial solutionX;, as a neighbor toX;. Let E; be the corresponding
objective function value

Acceptance test: If E; < E;: accept the trial solution, set x; = x; and go to Step
(2). Otherwise: if exp[(E; - E;)/Cp]2U(0,1) set X; = X; and go to Step (2). Else go
to Step (2)

If the stopping criterion is satisfied then stop, else decrease the temperature

cp*and go to Step (2).
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3.3 COOLING SCHEDULES

A finite-time implementation of the SAA can be realized by generating
homogenous Markov chains of a finite length for a finite sequence of descending values
of the control parameter Cp. To achieve this, one must specify a set of parameters that
governs the convergence of the algorithm. These parameters form a cooling schedule.
The parameters of the cooling schedules are as follows:

- an initial value of the control parameter

- a decrement function for decreasing the control parameter

- a final value of the control parameter specified by the stopping criterion

- a finite length of each homogenous Markov chain.

The search for adequate cooling schedules has been the subject of study in many
papers [94,101-104].

In this work, two cooling schedules are implemented, namely, the Polynomial-Time
and Kirk’s cooling schedules. The description of these cooling schedules is presented in

the following sections.

3.3.1 THE POLYNOMIAL-TIME COOLING SCHEDULE

This cooling schedule leads to a Polynomial-Time execution of the SAA, but it
does not guarantee the convergence of the final cost, as obtained by the algorithm, to the
optimal value. The different parameters of the cooling schedule are determined based on
the statistics calculated during the search. In the following we describe these parameters

[94,101,102].
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3.3.1.1 INITIAL VALUE OF THE CONTROL PARAMETER

The initial value of Cp, is obtained from the requirement that virtually all proposed
trial solutions should be accepted. Assume that a sequence of m trials is generated at a
certain value of Cp. Let my denote the number of trials for which the objective function
value does not exceed the respective current solution. Thus, m, = m—m, is the number of
trials that result in an increasing cost.

It can be shown that the acceptance ratio, X can be approximated by [94]:

(+)
X=(m1+ma.exp(-Af/Cp))/(m1+m2) G.1D)

+) . . . . .
where, Af is the average difference in cost over the m, cost-increasing trials.
From which the new temperature Cp is

(+)
Cp = Af/In(mz2 /(m2.X - m1(1- X) (3.2)

3.3.1.2 DECREMENT OF THE CONTROL PARAMETER
The next value of the control parameter,cp*+', is related to the current value, cp*

by the following function [94]:

cp**' = Ccp* 7/ (1+ (Cp*.In(1+8)/ 35Cpk (3.3)

where o is calculated during the search according to the equations given in
Appendix B. Small values of 5 lead to small decrements in Cp. Typical values of & are

between 0.1 and 0.5.
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3.3.1.3 THE FINAL VALUE OF THE CONTROL PARAMETER

Termination in the Polynomial-Time cooling schedule is based on an extrapolation
of the expected average cost at the final value of the control parameter. Hence, the
algorithm is terminated if for some value of k we have [94,101,102]:

cpk ey |

. 34
e A WEL (34)

where: (f)o ={f)cpo  is the average cost at initial value of control parameter Cp, .
Fecp is the average cost at kth Markov chain.

af)cp , is the rate of change in the average cost at cp*.
3CP lcp=cp,

£ is some small positive number. In our implementation

£ =0.00001.

3.3.1.4 THE LENGTH OF MARKOV CHAINS

In [94], it is concluded that the decrement function of the control parameter, as
given in (3.3), requires only a ‘small’ number of trial solution to rapidly approach the
stationary distribution for a given next value of the control parameter. The word ‘small’
can be specified as the number of transitions for which the algorithm has a sufficiently
large probability of visiting at least a major part of the neighborhood of a given solution.
In general, a chain length of more than 100 transitions is reasonable [94]. In our
implementation good results have been reached at a chain length of 150.

Proofs and more details of the polynomial-time cooling schedule equations are

presented in Appendix B.
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3.3.2 KIRK’S COOLING SCHEDULE

This cooling schedule was originally proposed by Kirkpatrick, Gelatt and Vecchi
[96] in (1982 & 1983). This schedule has been used in many applications of the SAA and
is based on a number of conceptually simple empirical rules. The parameters of this

cooling schedule are described in the following subsections [94,96]:

3.3.2.1 INITIAL VALUE OF THE CONTROL PARAMETER

It is recommended to start with an arbitrary control parameter Cp [94]. If the
percentage of the accepted trials solutions is close to 1, then this temperature is a
satisfactory starting Cp. On the other hand, if this acceptance ratio is not close to 1, then
Cp has to be increased iteratively until the required acceptance ratio is reached.

This can be achieved by starting off at a small positive value of Cp and multiplying
it with a constant factor, larger than 1, until the corresponding value of the acceptance
ratio, calculated from the generated transitions, is close to 1. In the physical system
analogy, this corresponds to heating up the solid until all particles are randomly arranged
in the liquid phase.

In our implementation, this procedure is accelerated by multiplying Cp by the

reciprocal of the acceptance ratio.

3.3.2.2 DECREMENT OF THE CONTROL PARAMETER

It is important to make “small” decrement in the values of the control parameter, to
allow for a very slow cooling and consequently reach an equilibrium at each value of

control parameter, Cp. A frequently used decrement function is given by

Cp**' = a.Cp¥, k=12, (3.5)
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Where o is a constant smaller than but close to 1. Typical values lie among 0.8 and

0.99.

3.3.2.3 FINAL VALUE OF THE CONTROL PARAMETER

Execution of the algorithm is terminated if the value of the cost function of the
solution obtained in the last trial of the Markov chain remains unchanged for a number of

consecutive chains (Lm). In our implementation, Lm is taken as 500 chains.

3.3.2.4 LENGTH OF THE MARKOV CHAIN
The length of Markov chains,[¥, is based on the requirement that equilibrium is to
be restored at each value of Cp. This is achieved after the acceptance of at least some

fixed number of transitions. However, since the transitions are accepted with decreasing

probability, one would obtain X >0 as cp¥ > 0. Consequently, X is bounded by
some constant Lmax to avoid extremely long Markov chains for small values of cp*. In
this work, the chain length is guided by the changes of the best solution that has been
obtained thus far. The chain length is assumed equal to 150 unless the best solution
changes. If so, the chain length is extended by another 150 iterations.

In the following section, we describe the details of the proposed SAA as applied to

the UCP.

3.4 THE PROPOSED SIMULATED ANNEALING ALGORITHM

In solving the UCP, two types of variables need to be determined. The binary unit

status variables U and V and the continuous units output power variables, P. The problem
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can then be decomposed into two subproblems: a combinatorial optimization problem in

U and V and a nonlinear optimization problem in P. The SAA is used to solve the

combinatorial optimization problem and a quadratic programming routine is used to solve

the nonlinear optimization problem [68].

The main steps of the proposed SAA are presented as follows:

Step (0):

Step (1):

Step (2):

Step (3):

Step (4):

Step (5):

Step (6):

Step (7):

Initialize all variables (U,V,P ) and set iteration counter k=0.

Find randomly an initial feasible solution (U¥,v&), (see Section 2.5).

Calculate the total operating cost, FX , as the sum of Fit and Sit in two steps:
eSolve the economic dispatch problem (see Section 2.6).
eCalculate the start-up cost.
Determine the initial temperaturecp*, that results in a high probability of
accepting any solution.
[f equilibrium is achieved go to Step (7). Otherwise; Repeat Steps (5) and (6)
for the same temperature cp*, until the equilibrium criterion is satisfied.
Find a trial solution (u¥,vf),a neighbor to (U ,v& ), with objective function

value, FX (see Section 2.4).

Perform the acceptance test then go to Step (7). If FX <FX or
exp[(F* —Ft*)/Cp]=U(0,1) then accept the trial solution and let (U% ,v& )=
(u¥,v ), otherwise reject the trial solution.

If the stopping criterion is satisfied then stop. Else decrease the temperature to

Cp**' according to the cooling schedule, set k=k+1, and go to Step (4).
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In the following section, we present a comparison with other SAA reported in the

literature.

3.5 COMPARISON WITH OTHER SAA IN THE LITERATURE

There is only one application of the SA to the UCP available in the literature [67].
This will be referred to as SAA-67. There are four major differences between SAA-67
and the proposed algorithm [68]. These differences are as follows:

e In SAA-67, the starting solution is obtained using a priority list method which could
be considered as a suboptimal solution, while that in the proposed algorithm we start
with a randomly generated solution which may be far from the optimal one.

e There is no rule for selecting the initial temperature in SAA-67. In the proposed
algorithm the initial value of the temperature is determined by applying the heating
process until a prespecified value of acceptance ratio (typical values used 0.8-0.95) is
reached.

e In SAA-67, the trial solutions may not be feasible and a penalty term is used for
constraints violation. In the proposed algorithm, all trial solutions are feasible which
results in considerable saving in the CPU time.

e Kirk’s cooling schedule is used in SAA-67. The temperature is decreased by
multiplying the initial temperature by a constant between 0 and 1 raised to the
iteration number. In the proposed algorithm, the polynomial-time cooling schedule is

used which is based on the statistics calculation during the search.
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A comparison of the results obtained by the two algorithms and other methods is

presented in the next section.

3.6 NUMERICAL RESULTS OF THE SAA

Based on the SAA and the proposed rules for generating random trial solution, a
computer model has been implemented [68]. The model offers different choices for
finding trial solutions, e.g. completely random, semi random, and a mix of both with
certain probability. The two schedules of Kirk and the Polynomial-Time are
implemented and compared.

To compare our results with SAA-67, we implemented the algorithm described in
reference  [67] and used the parameter settings (initial, decrement and final temperature)
as described in the reference.

Three examples from the literature are solved. The first two examples include 10
generating units each while the third contains 26 units. The scheduling time horizon for
all cases is 24 hours. The full data of the three examples are presented in Appendix C.
Example 1 [29], was solved by Lagrangian Relaxation, LR. Example 2 [41], was solved
by Integer Programming, IP. Example 3 [62,63], was solved by Expert Systems, ES.

The polynomial-time cooling schedule has been used in all of the solved examples. A
number of tests on the performance of the proposed SAA, have been carried out on the
three examples to find the most suitable cooling schedule parameters settings. The

following parameters for the polynomial-time cooling schedule have been chosen after
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running a number of simulations: chain length=150, ¢=0.00001, &=0.3, initial
acceptance ratio, x=0.95, and the maximum number of iterations = 5000.

Table (3.1) presents the comparison between the results of Examples | and 2,
solved by LR, IP, and our SAA. The results show the improvement achieved by our
algorithm over both IP and LR results.

Table (3.2) shows the comparison between the results obtained for Examples 1,2,
and 3 solved by SAA-67 and our SAA. It is obvious that our SAA achieves a
considerable reduction in the operating costs for the three examplies.

Detailed results for Example 1 are given in Tables (3.3) and (3.4). Table (3.3)
showing the load sharing among the committed units in the 24 hours. Table (3.4) gives
the hourly load demand, and the corresponding economic dispatch costs, start-up costs,
and total operating cost. Similar detailed results for Examples 2 and 3 are also shown in
Tables (3.5)-(3.9).

Table (3.1) Comparison between our proposed SAA, the LR and the IP

Example | LR[29] | IP [41] Our SAA
Total Cost (3) I 540895 - 536622
N 2 : 60667 59512
% Saving I 0 N 0.79
N 2 - 0 1.9

Table (3.2) Comparison between our proposed SAA and the SAA-67

Example SAA-67 Our SAA
Total Cost ($) 1 538803 536622
" 2 59512 59512
. 3 663833 662664
% Cost Saving 1 0.38 0.79
v 2 1.9 1.9
v 3 0 0.17




Table (3.3) Power sharing (MW) of Example 1.

HR Unit Number*
2 3 4 6 7 8 9 10
1 | 400.0 0 0 185.0 0 350.3 0 89.7
2 | 3954 0 0 181.1 0 338.4 0 85.2
3 | 3554 0 0 168.7 0 301.0 0 75.0
4 | 333.1 0 0 161.8 0 280.1 0 75.0
5 | 400.0 0 0 185.0 0 350.3 0 89.7
6 | 400.0 0 0 191.9 0 371.1 | 3394 | 97.6
7 | 400.0 0 343.0 | 200.0 0 375.0 | 507.0 | 145.0
8 | 400.0 0 420.0 | 200.0 | 311.5 | 375.0 | 693.5| 0.0
9 | 400.0 0 420.0 | 200.0 | 420.6 | 375.0 | 805.0 | 229.4
10 | 400.0 | 444.6 | 420.0 { 200.0 | 358.1 | 375.0 | 741.1 [ 211.3
11 | 400.0 | 486.3 | 420.0 | 200.0 | 404.9 | 375.0 | 789.0 | 224.9
12 | 400.0 | 514.1 | 420.0 | 200.0 | 436.1 | 375.0 | 820.9 | 233.9
13 | 400.0 | 479.4 | 420.0 | 200.0 { 397.1 | 375.0 | 781.0 | 222.6
14 | 400.0 | 389.0 | 420.0 | 200.0 | 295.6 | 375.0 | 677.2 | 193.2
15 | 400.0 | 310.1 | 410.8 | 200.0 | 250.0 | 375.0 | 586.6 | 167.5
16 | 400.0 | 266.6 | 368.3 | 200.0 | 250.0 | 375.0 | 536.7 | 153.4
17 | 400.0 | 317.3 | 417.9 | 200.0 | 250.0 | 375.0 | 594.9 | 169.9
18 | 400.0 | 458.5 | 420.0 | 200.0 | 373.7 | 375.0 | 757.0 | 215.8
19 | 400.0 | 486.3 | 420.0 | 200.0 | 404.9 | 375.0 | 789.0 | 224.9
20 | 400.0 | 375.1 | 420.0 | 200.0 | 280.0 | 375.0 | 661.2 | 188.7
21 | 400.0 0 305.0 | 200.0 | 250.0 | 375.0 | 462.6 | 132.4
22 | 383.5 0 150.0 | 177.4 | 250.0 | 327.2 | 280.9 | 81.0
23 | 241.9 0 130.0 | 133.4 | 250.0 | 194.7 | 275.0 | 75.0
24 | 175.1 0 130.0 | 112.7 | 250.0 | 132.3 | 275.0 | 75.0

* Units (1) and (5) are OFF all hours.
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Table (3.4) Load demand and hourly costs of Example 1.

2

LOAD

ED-COST

ST-COST

T-COST

1.03E+03

9.67E+03

0.00E+00

9.67E+03

1.00E+03

9.45E+03

0.00E+00

9.45E+03

9.00E+02

8.56E+03

0.00E+00

8.56E+03

8.50E+02

8.12E+03

0.00E+00

8.12E+03

1.03E+03

9.67E+03

0.00E+00

9.67E+03

1.40E+03

1.36E+04

9.50E+02

1.46E+04

1.97E+03

1.92E+04

6.50E+02

1.99E+04

2.40E+03

2.39E+04

9.50E+02

2.48E+04

2.85E+03

2.84E+04

6.25E+02

2.90E+04

ool |a ] mjwlo|—

3.15E+03

3.17E+04

9.50E+02

3.27E+04

—
—

3.30E+03

3.32E+04

0.00E+00

3.32E+04

s
N

3.40E+03

3.42E+04

0.00E+00

3.42E+04

—
W

3.28E+03

3.30E+04

0.00E+00

3.30E+04

—
BN

2.95E+03

2.97E+04

0.00E+00

2.97E+04

—
W

2.70E+03

2.73E+04

0.00E+00

2.73E+04

—
(o)

2.55E+03

2.58E+04

0.00E+00

2.58E+04

—
~

2.73E+03

2.75E+04

0.00E+00

2.75E+04

—
oo

3.20E+03

3.22E+04

0.00E+00

3.22E+04

p—
\O

3.30E+03

3.32E+04

0.00E+00

3.32E+04

(3]
o

2.90E+03

2.92E+04

0.00E+00

2.92E+04

N
—

2.13E+03

2.13E+04

0.00E+00

2.13E+04

N
[\

1.65E+03

1.70E+04

0.00E+00

1.70E+04

N
W

1.30E+03

1.39E+04

0.00E+00

1.39E+04

[\
NN

1.15E+03

1.27E+04

0.00E+00

1.27E+04

Total operating cost = $536622
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Table (3.5) Power sharing (MW) of Example 2.

79

=5

1

2

Unit Number
3 4 5 6 7 8

9

10

60.00

80.00

100.00 ] 120.00] 150.00 ] 189.99 | 372.59] 0.00

186.42

200.00

60.00

80.00

100.00) 109.98 | 150.00 | 170.54 | 332.62 | 0.00

168.85

200.00

60.00

80.00

100.00] 99.72 | 146.67 | 155.53 ] 301.77] 0.00

155.30

200.00

60.00

80.00

100.00]| 98.10 | 143.74]153.15]296.87| 0.00

153.14

200.00

60.00

80.00

100.00| 96.47 |140.80 | 150.77]291.97| 0.00

150.99

200.00

60.00

80.00

100.00 101.47|149.82 | 158.09 | 307.02 | 0.00

157.60

200.00

60.00

80.00

100.00 | 109.98 | 150.00 | 170.54 | 332.62 | 0.00

168.85

200.00

60.00

80.00

100.00 | 101,47 149.82 | 158.09] 307.02|_0.00

157.60

200.00

O OO |~J|O\|n ] Lo h—

60.00

80.00

100.00] 96.47 | 140.80]150.77 | 291.97| 0.00

150.99

200.00

60.00

80.00

100.00) 117.59]150.00| 0.00 |355.50| 0.00

178.91

200.00

60.00

80.00

100.00} 109.14]150.00| 0.00 [330.11| 0.00

167.75

200.00

60.00

80.00

100.00) 106.33]150.00} 0.00 |321.64| 0.00

164.03

200.00

60.00

80.00

100.00/ 101.20} 149.33| 0.00 |306.22| 0.00

157.25

200.00

60.00

80.00

100.00 98.96 | 145.29]| 0.00 |299.47| 0.00

154.28

200.00

60.00

80.00

100.00)| 97.00 | 141.75]| 0.00 293.56| 0.00

151.69

200.00

60.00

77.69

97.37 | 93.62 | 135.68]| 0.00 |283.42]| 0.00

147.23

200.00

60.00

74.60

94.26 | 90.42 | 129.91] 0.00 ;273.80] 0.00

143.00

200.00

60.00

71.52

91.15 | 87.23 |124.15| 0.00 |264.18| 0.00

138.78

200.00

60.00

66.77

86.37 | 82.31 | 115.28] 0.00_| 250.00| 0.00

132.27

200.00

59.82

64.41

83.99 | 79.86 |110.88| 0.00 |250.00; 0.00

129.04

200.00

58.17

62.29

81.85 | 77.66 | 10691 | 0.00 |?250.00| 0.00

126.13

200.00

60.00

69.92

89.54 | 85.57 |121.17] 0.00 |259.20] 0.00

136.59

200.00

60.00

76.20

95.86 | 92.08 | 132.89| 0.00 |278.77] 0.00

145.19

200.00

60.00

80.00

100.00 | 120.00 | 150.00 | 189.99 | 372.59 ] 9.00

0.00

186.42




Table (3.6) Load demand and hourly costs of Example 2.

HR

LOAD

ED-COST

ST-COST

T-COST

1.46E+03

3.06E+03

0.00E+00

3.06E+03

1.37E+03

2.86E+03

0.00E+00

2.86E+03

1.30E+03

2.70E+03

0.00E+00

2.70E+03

1.29E+03

2.67E+03

0.00E+00

2.67E+03

1.27E+03

2.64E+03

0.00E+00

2.64E+03

1.31E+03

2.73E+03

0.00E+00

2.73E+03

1.37E+03

2.86E+03

0.00E+00

2.86E+03

1.31E+03

2.73E+03

0.00E+00

2.73E+03

1.27E+03

2.64E+03

0.00E+00

2.64E+03

= N3 oI ERT -8 (W) N W8 (6]

1.24E+03

2.57E+03

0.00E+00

2.57E+03

11

1.20E+03

2.47E+03

0.00E+00

2.47E+03

12

1.18E+03

2.44E+03

0.00E+00

2.44E+03

13

1.15E+03

2.38E+03

0.00E+00

2.38E+03

14

1.14E+03

2.34E+03

0.00E+00

2.34E+03

15

1.12E+03

2.31E+03

0.00E+00

2.31E+03

16

1.10E+03

2.25E+03

0.00E+00

2.25E+03

17

1.07E+03

2.19E+03

0.00E+00

2.19E+03

18

1.04E+03

2.13E+03

0.00E+00

2.13E+03

19

9.93E+02

2.04E+03

0.00E+00

2.04E+03

20

9.78E+02

2.01E+03

0.00E+00

2.01E+03

21

9.63E+02

1.98E+03

0.00E+00

1.98E+03

22

1.02E+03

2.10E+03

0.00E+00

2.10E+03

23

1.08E+03

2.22E+03

0.00E+00

2.22E+03

24

1.46E+03

3.06E+03

1.65E+02

3.22E+03

Total operating cost = $59512
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Table (3.7) Power sharing (MW) of Example 3 (for units 1-13).

81

z

1

2

3

4

5

Unit Number

6

9

10 11 12

13

2.40

2.40

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

36.40

15.20

15.20

2.40

2.40

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

16.40

15.20

15.20

2.40

2.40

0.00

2.40

0.00

0.00

0.00

0.00

0.00

0.00

15.20

15.20

15.20

2.40

2.40

0.00

2.40

0.00

0.00

0.00

0.00

0.00

0.00

15.20

15.20

15.20

2.40

2.40

0.00

2.40

0.00

0.00

0.00

0.00

0.00

42.40

15.20

0.00

15.20

2.40

2.40

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

40.60

15.20

0.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

55.65

0.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

2.40

2.40

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

2.40

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

2.40

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

2.40

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

2.40

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

N L] ] Fad D o 2 o s e e ol g R 0 ERT =8 (S PR N

2.40

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

76.00

76.00

33.00

15.20




Table (3.8) Power sharing (MW) of Example 3 (for units 14-26).

82

5

14

15

16

17

18

Unit Number

19

20

21

22

23

24

25

26

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

347.2

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

327.2

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

25.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

25.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

68.95

0.00

350.0

350.0

350.0

100.0

100.0

85.70

155.0

155.0

155.0

155.0

0.00

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

185.7

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

185.7

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

75.25

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

165.7

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

178.1

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

158.1

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

88.10

68.95

68.95

350.0

350.0

350.0

100.0

44.15

25.00

155.0

155.0

155.0

155.0

68.95

68.95

68.95

350.0

350.0

350.0

100.0

84.15

25.00

155.0

155.0

155.0

155.0

68.95

68.95

68.95

350.0

350.0

350.0

100.0

100.0

99.15

155.0

155.0

155.0

155.0

68.95

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

168.1

68.95

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

75.25

68.95

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

183.3

68.95

68.95

350.0

350.0

350.0

100.0

100.0

94.35

155.0

155.0

155.0

155.0

68.95

68.95

68.95

350.0

350.0

350.0

0.00

77.25

25.00

155.0

155.0

155.0

155.0

68.95

0.00

0.00

350.0

350.0

350.0

N
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0.00

25.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0




Table (3.9) Load demand and hourly costs of Example 3.

g

LOAD

ED-COST

ST-COST

T-COST

1.82E+03

1.79E+04

0.00E+00

1.79E+04

1.80E+03

1.77E+04

0.00E+00

1.77E+04

1.72E+03

1.65E+04

0.00E+00

1.65E+04

1.70E+03

1.63E+04

0.00E+00

1.63E+04

1.75E+03

1.69E+04

8.00E+01

1.70E+04

1.91E+03

1.95E+04

1.80E+02

1.97E+04

2.05E+03

2.22E+04

3.00E+02

2.25E+04

2.40E+03

2.95E+04

5.00E+02

3.00E+04

2.60E+03

3.43E+04

3.00E+02

3.46E+04

2.60E+03

3.43E+04

0.00E+00

3.43E+04

2.62E+03

3.48E+04

0.00E+00

3.48E+04

2.58E+03

3.38E+04

0.00E+00

3.38E+04

2.59E+03

3.40E+04

0.00E+00

3.40E+04

2.5TE+03

3.35E+04

0.00E+00

3.35E+04

2.50E+03

3.19E+04

0.00E+00

3.19E+04

2.35E+03

2.91E+04

0.00E+00

2.91E+04

2.39E+03

2.98E+04

0.00E+00

2.98E+04

2.48E+03

3.15E+04

0.00E+00

3.15E+04

2.58E+03

3.38E+04

0.00E+00

3.38E+04

2.62E+03

3.48E+04

0.00E+00

3.48E+04

2.60E+03

3.43E+04

0.00E+00

3.43E+04

2.48E+03

3.16E+04

0.00E+00

3.16E+04

2.15E+03

2.42E+04

0.00E+00

2.42E+04

ot
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1.90E+03

1.93E+04

0.00E+00

1.93E+04

Total operating cost = $662664
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3.7 SUMMARY

A new implementation of a SAA to solve the UCP has been presented in this
Chapter. Two different cooling schedules for the SAA are implemented and compared.

The detailed description of the proposed SAA is given. The comparison between
our SAA and other SAA reported in the literature is also presented. The computational
results along with a comparison with the previously published classical optimization
methods showed the effectiveness of the proposed SAA.

In the next Chapter, two new algorithms based on the tabu search methods will be

described.
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CHAPTER FOUR

NEW TABU SEARCH ALGORITHMS FOR UNIT

COMMITMENT

4.1 INTRODUCTION

Tabu Search (TS) is a powerful optimization procedure that has been successfully
applied to a number of combinatorial optimization problems [100-116]. It has the ability
to avoid entrapment in local minima. TS employs a flexible memory system (in contrast
to ‘memoryless’ systems, such as SA and GAs, and rigid memory systems as in branch-
and-bound). Specific attention is given to the Short Term Memory (STM) component of
TS, which has provided solutions superior to the best obtained by other methods for a
variety of problems [108]. Advanced TS procedures are also used for sophisticated
problems. These procedures include, in addition to the STM, Intermediate Term Memory
(ITM), Long Term Memory (LTM), and Strategic Oscillations (SO).

In this chapter, we propose two new algorithms for the UCP based on the TS
method. The first algorithm uses the STM procedure, while the second algorithm is based

on advanced TS procedures. Different criteria for constructing the Tabu List (TL)
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restrictions for the UCP are implemented and compared. Several examples are solved to
test the proposed algorithms.

In the next section, a general Tabu Search Algorithm (TSA) is presented, followed
in Section 4.3, by a Simple Tabu Search Algorithm (STSA), based on the STM
procedures as applied to the UCP. Section 4.4 presents the detailed description of the
different TL approaches that have been used in the developed algorithms. In Section 4.5
the computational results of the STSA along with a comparison with a previously
published work are presented. In Section 4.6 a theoretical overview of the advanced TS
procedures is presented, followed in Section 4.7, by the detailed description of an ATSA
for the UCP. Section 4.8 details the computational results of the ATSA along with a

comparison with the results of other methods reported in the literature.

4.2 TABU SEARCH METHOD

4.2.1 OVERVIEW

In general terms, TS is an iterative improvement procedure which starts from some
initial feasible solution and attempts to determine a better solution in the manner of a
greatest-descent algorithm. However, TS is characterized by an ability to escape local
optima (which usually cause simple descent algorithms to terminate) by using a short
term memory of recent solutions. Moreover, TS permits backtracking to previous
solutions, which may ultimately lead , via a different direction, to better solutions [109].

The main two components of a TSA are the TL restrictions and the Aspiration
Level (AV) of the solution associated with these restrictions. Discussion of these terms

are presented in the following sections.
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4.2.2 TABU LIST RESTRICTIONS

TS may be viewed as a ‘meta-heuristic’ superimposed on another heuristic. The
approach undertake to surpass local optimality by a strategy of forbidding (or, more
broadly, penalizing) certain moves. The purpose of classifying certain moves as
forbidden - i.e. “tabu” - is basically to prevent cycling. Moves that hold tabu status are
generally a small fraction of those available, and a move loses its tabu status to become
once again accessible after a relatively short time.

The choice of appropriate types of tabu restrictions “list” depends on the problem
under study. The elements of the TL are determined by a function that utilizes historical
information from the search process, extending up to “Z” iterations in the past, where Z
(TL size) can be fixed or variable depending on the application or the stage of the search.

The TL restrictions could be stated directly as a given change of variables (moves)
or indirectly as a set of logical relationships or linear inequalities. Usage of these two
approaches depends on the size of the TL for the problem under study.

A TL is managed by recording moves in the order in which they are made. Each
time a new element is added to the “bottom” of a list, the oldest element on the list is
dropped from the “top”. The TL is designed to insure the elimination of cycles of length
equal to the TL size. Empirically [108], TL sizes that provide good resuits often grow
with the size of the problem and stronger restrictions are generally coupled with smaller
lists.

The way to identify a good TL size for a given problem class and choice of tabu
restrictions is simply to watch for the occurrence of cycling when the size is too small and
the deterioration in solution quality when the size is too large ( caused by forbidding too
many moves). The best sizes lie in an intermediate range between these extremes. In
some applications a simple choice of Z in arange centered around 7 seems to be quite

effective [106].
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4.2.3 ASPIRATION CRITERIA

Another key issue of TS arises when the move under consideration has been found
to be tabu. Associated with each entry in the TL there is a certain value for the evaluation
function called Aspiration Level (AV). If appropriate aspiration criteria are satisfied, the
move will still be considered admissible in spite of the tabu classification. Roughly
speaking, AV criteria are designed to override tabu status if a move is “good enough”
with the compatibility of the goal of preventing the solution process from cycling [106].
Different forms of aspiration criteria are available. The one we use in this study is to
override the tabu status if the tabued moves yield a solution which has a better evaluation

function than the one obtained earlier for the same move.

4.2.4 STOPPING CRITERIA

There may be several possible stopping conditions for the search. In our implementation
we stop the search if any of the following two conditions is satisfied:
e The number of iterations performed since the best solution last changed is greater than
a prespecified maximum number of iterations, or

e The maximum allowable number of iterations is reached.

4.2.5 GENERAL TABU SEARCH ALGORITHM

In applying the TSA, to solve a combinatorial optimization problem, the basic idea
is to choose a feasible solution at random and then get a neighbor to this solution. A
move to this neighbor is performed if either it does not belong to the TL or, in case of
being in the TL it passes the AV test. During these search procedures the best solution is
always updated and stored aside until the stopping criteria is satisfied.

A general TSA, based on the STM, for combinatorial optimization problems can be
described as follows:

The following notation is used in the algorithm:

X: The set of feasible solutions for a given problem.

X: Current solution, x eX.



th]

X

?

X
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Best solution reached.

Best solution among a sample of trial solutions.

E (x): Evaluation function of solution x.
N (x): Set of neighborhood of x X (trial solutions).
S(x): Sample of neighborhood, of x , S (x) eN (x).

SS (x): Sorted sample in ascending order according to their evaluation functions,

Step (0):

Step (1):

Step (2):

Step (3):

Step (4):

Step (5):

Step (6):

Step (7):

E (x).
Set the TL as empty and the AV to be zero.
Set iteration counter K=0. Select an initial solution x X, and set x”=x.
Generate randomly a set of trial solutions S (x) €N (x) (neighbor to the current
solution x) and sort them in an ascending order, to obtain SS (x). Let x’ be the
best trial solution in the sorted set SS (x) (the first in the sorted set).
If E X)E (x”), go to Step (4), else set the best solution x”=x’ and go to
Step (4).
Perform the tabu test. If x’ is NOT in the TL, then accept it as a current
solution, set x=x’, and update the TL and AV and go to Step (6), else go to
Step (5).
Perform the AV test. If satisfied, then override the tabu state ,Set x=x’,
update the AV and go to Step (7), else go to Step (6).
If the end of the SS (x) is reached, go to Step (7), otherwise, let X’ be the next
solution in the SS (x) and got Step (3)
Perform termination test. If the stopping criterion is satisfied then stop, else

Set K=K+1 and go to Step (2).

The main steps of the TSA are also shown in the flow chart of Fig. (4.1).
In the following section we describe the details of the general TSA as applied to the

UCP.



Start

Initialize tabu search parameters (TL & AV)

v

Find randomly an initial feasible solution

v

Set the current and best solutions equal to the initial solution

v

-3 Find a set of neighbors to the current solution

v

Calculate the objective function of each neighbor
in the set, and find the best among them

Is the Yes
best neighbor

TABU ?

s AV satisfied 7

Accept this solution. Update the current solution and
the best solution(if required) by the accepted solution No

Is
Stopping criteria

satisfied ?

Fig. (4.1) Flow chart of a general Tabu Search Algorithm
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4.3 THE PROPOSED TABU SEARCH ALGORITHM FOR UNIT

COMMITMENT

As previously explained, the UCP can be decomposed into two subproblems, a
combinatorial optimization problem in U and V and a nonlinear optimization problem in
P. TS is used to solve the combinatorial optimization and the nonlinear optimization is
solved via a quadratic programming routine. In this section a STSA, based on the STM
approach, is introduced. The proposed algorithm contains three major steps:

o First, the generation of randomly feasible trial solutions.

e Second, the calculation of the objective function of the given solution by
solving the EDP.

o Third, the application of the TS procedures to accept or reject the solution at
hand.

The details of the STSA as applied to the UCP are given in the following steps:
Step (0): Initialize all variables (U,V,P ) to be zeros and set iteration counter K=0.

Step (1): Generate, randomly, an initial current feasible solution (u?,w°), (see Section
2.5).
Step (2): Calculate the total operating cost,R? , for this solution in two steps:
-Solve the EDP to get the output power (p°) and the corresponding
production cost (see Section 2.6).
-Calculate the start-up cost for this schedule.
Step (3): Set the global best solution equal to the current solution, (u,,v;) = (0. W),

Fg=RC.
Step (4): Find a set of trial solutions S (U, w), that are neighbors to the current solution

(U<, w), see Section 2.4 , with objective function values, F*(S).
Step (5): Sort the set of solutions in an ascending order. Let SF¥(S)be the sorted values.

Let (uf,vi ) be the best trial solution in the set, with an objective function F, .
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Step (6): If F, >Fg go to Step (7), else update the global best solution, set (ug,v,) =
(u%, vk ) and go to Step (7).
Step (7): If the trial solution (u%,vg ) is NOT in the TL, then update the TL, the AV and

the current solution; Set (U<, V<) = (&, w), and F*=F, and go to Step (9), else
go to Step (8).

Step (8): If the AV test is NOT satisfied go to Step (9), else override the tabu state , set
(U ) = (UK. W), update the AV and go to Step (10).

Step (9): If the end of the SF*(S) is reached, go to Step (10), otherwise let (uk, v ) be

the next solution in the SF*(S) and go to Step (6).

Step (10): Stop if the termination criterion is satisfied , else set K=K+1 and go to Step
4.

In the following section, we describe some methods to create TL for the UCP.

4.4 PROPOSED TABU LIST TYPES FOR UCP

The TL embodies one of the primary STM functions of the TS procedure, which it
executes by recording only the “Z” most recent moves, where Z is the TL size. A move in
the UCP is defined as switching a unit from On to OFF or the opposite at some hours in
the scheduling horizon. Since the solution matrices in the UCP (U and V) have large sizes
(TxN), it is worth proposing and testing different approaches to create the TL moves

attributes rather than recording a full solution matrix.

4.4.1 THE PROPOSED TABU LISTS APPROACHES FOR UCP

In this section, we propose original concepts for creating the TL for the UCP.
During the early stages of implementing the TSA to solve the UCP, five approaches for
creating the TL restrictions were tested with the aim of selecting the best among them. In
our implementation we create a separate TL for each generating unit. The Generating

Unit Tabu List (GUTL) has a dimension of ZxL, where L is the recorded move attributes



93

length. In the following, the five proposed approaches of TL types for the UCP are

described:

To illustrate the implementation of the proposed different approaches of TL a
numerical example is shown in Figs. (4.2) and (4.3). Fig. (4.2) shows an initial trial
solution of a unit and four different moves generated at random. Move 1, for example, is
generated from the initial schedule by randomly selecting hour three (t=3) as the instant
of changing the schedule. Move 2 is generated from move 1 and the change starts at

instant t=7.

4.4.1.1 APPROACH (1)

In this approach each GUTL is a one dimensional array of length Z. Each entry
records a time that has been previously selected randomly to generate a trial solution for
this unit, irrespective of the unit status at that time. In Fig. (4.3) the TL implementation
for the example of Fig. (4.2) using this approach is shown. As mentioned, only hours at
which the schedule starts to be changed are recorded, i.e. hours 3,7,1 and 4 at the moves

1,2,3 and 4 respectively.

4.4.1.2 APPROACH (2)

The TL created in this approach will be of dimension Zx2. Each entry records the
time that has been previously selected randomly to generate a trial solution for this unit,
in addition to the unit status at this time. The implementation of this approach is shown in

Fig. (4.3). For example, at the hour 3 (move 1), the unit status is 0 while at the hour 4

(move 3), the unit status was 1.

4.4.1.3 APPROACH (3)

In this case each GUTL contains one dimensional array of Z entries. Each entry
records the number of ON periods for the respective unit (the number of ones in the

column of that unit in the matrix U). In Fig. (4.3) the first entry ( corresponds to move 1)
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of the TL using this approach shows 10, which is equivalent to the number of ON hours

at that move.

t=3 t=7 t=1 t=4

1 1 1 1 0 0
2] 1 1 1 0 0
3] o 1 1 0 0
4| 0 1 1 1 0
5| o 1 1 1 0
6] 0 1 1 1 0
71 1 1 0 0 0
8 1 1 0 0 0
91 1 1 1 1 1
19 1 1 1 1 1
11 0 0 0 0 0
11 0 0 0 0 0

Initial Move Move Move Move

Trial 1 2 3 4

Fig.(4.2) Example of trial solutions for one unit (scheduling time horizon=12)

3 3,0 10 1,11 1023

7 7,1 8 1,9, 7,11 1598

1 1.1 5 4,9, 711 1692

4 4,1 2 9 11 1536
Approach 1 Approach 2 Approach 3 Approach 4 Approach §

Fig. (4.3) Different approaches of tabu lists implementation

4.4.1.4 APPROACH (4)

In this approach we record the instances at which a unit is turned ON and OFF
during the scheduling horizon. These instances come in pairs. If these ON-OFF pairs

occur m times during the scheduling time horizon then GUTL will have the size Zx (2m).
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Fig. (4.3) shows the TL of the unit when applying this approach to the solutions
generated in Fig. (4.2). The TL entries show the starting and the shut down hours for each
trial solution respectively. For example, at move 2, the unit started at hour 1 and shut
down at hour 7, then started again at hour 9 and shut down at hour 11. Hence, the entry of
this move in the TL is recorded as 1 and 9 as starting hours and the shut down hours are

recordedas 7and 11.

4.4.1.5 APPROACH (5)

In this approach the solution vector for each generating unit (which has 0 or 1
values) is recorded as its equivalent decimal number. Hence, the Generating Unit Tabu
List (GUTL) is a one dimensional array of length Z. Each entry records the equivalent
decimal number of a specific trial solution for that unit. By using this approach we record
all information of the trial solution using minimum memory requirements. The TL
implementation using this approach isshown in Fig. (4.3). As shown, the entries of the
TL represent the equivalent decimal number for each binary vector of a trial solution. It is
clear that this approach insures the uniqueness of the representation of a specific trial
solution.

In the following section, the comparison between the results of the aforementioned

five approaches is presented.

4.4.1.6 THE COMPARISON BETWEEN THE DIFFERENT TABU LIST APPROACHES
To find the most efficient approach among the five described approaches for
creating the TL for the UCP, several tests were conducted. Example 1 was solved with

different initial solutions and different random seeds using the five different approaches
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of the TL. To summarize the results, Table (4.1) shows the daily operating costs for the
proposed five approaches of TL types as applied to example 1 [29]. In all cases we started
with the same initial feasible solution and the same random number seed. It is obvious
that the results of approaches 4 and 5 are the best. The reason is that the attributes of the
moves are fully recorded, hence the search becomes more precise which prevents cycling

during the age of TL. However approach 5 requires less memory space.

Table (4.1) Comparison of the Five Proposed Approaches of TL Types Using TL
Size of 7 (Example 1)

Approach No. 1 2 3 4 5
TL Dimension Zx1 Zx?2 Zx1 Zx2m Zx1
Cost ($) 540986 540409 540174 538390 | 538390

4.4.2 TABU LIST SIZE FOR UCP

The size of the TL determines the most suitable number of moves to be recorded.
To find a suitable size of TL, values of Z between S and 30 have been tested. Table (4.2)
shows that the best value of Z was related to the TL restrictions type, where a more
restricted TL corresponds to small size and visa versa. In our implementation, the results
are based on a TL of size 7, which was found to be the best TL size for attempted
examples.

Different experiments were carried out on different examples to find the most
suitable TL size. Table (4.2) shows the daily operating costs obtained for example 1,
using approach 4, with different TL sizes starting with the same initial solution. The best
results for this example are obtained at a tabu size value of 7 as shown in the table. This is
in agreement with the literature [106].

The rest of the results of this section are obtained with the TL implemented

according to approach 4 and of size 7, while approach 5 will be used in Section 4.8.
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Table (4.2) Comparison of Different TL Sizes Using Approach 4 (Example 1)

TL Size 5 7 10 20 30
Cost ($) | 539496 | 538390 [ 539374 | 539422 | 540215

4.5 NUMERICAL RESULTS OF THE STSA

Based on the STSA, a computer program has been implemented. The program
offers different choices for finding a trial solution, e.g. completely random, semi random,
and a mix of both with certain probability. The previously described approaches for TL
have been implemented and compared.

In order to test the model the same examples, described in Chapter 3, are
considered.

To illustrate the convergence trend in the TS method, a plot of the current and best
solutions with the iteration number for Example 1 [29] is given in Fig. (4.4). As shown,
the current solution has no trend, since the TS criteria is to accept any non-tabu solution
regardless of its objective function value. Basically this is the main idea behind the ability
of the TS method to escape local minima. On the other hand, the best solution is
improving very fast at the beginning of the search while the improvement becomes
slower at the end of the search.

Table (4.3) presents the comparison of results for Examples 1 and 2, solved by LR
[29], IP [41], and the TSA. The results show the improvement achieved by the proposed
STSA algorithm over both IP and LR results.

Tables (4.4), (4.5) and (4.6) show detailed results for Example 1 [29]. Table (4.4)
presents the initial starting solution for the given results, which is randomly generated. It
is obvious that this initial schedule is very far from the optimal one. The cost of this
initial schedule is $615648.87, whereas that of the obtained final solution is $538390.
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Table (4.5) shows the load sharing among the committed units in 24 hours. Table (4.6)
gives the hourly load demand and the corresponding economic dispatch costs, start-up
costs, and total operating cost.

In Example 2 [41], the optimal unit commitment is shown in Table (4.7) along with
the load demand and the hourly operating costs. Table (4.8) gives the same results for
Example 3 [62.63]. Since it is not clear to us the amount of reserve taken for this example
in [62,63], we assumed a spinning reserve of 10%, and the corresponding total operating

cost obtained is $662583.

6.2E+5 —
f
5 amem— Current Solution
@ i - o = Best Solution
E 6OE+5 — ‘
:
2
E_ 58E+5 —

5.6E+5

5.4E+5

5.2E+5 ~T T T l T I T [ 1
0 200 400 600 800 100
Iteration Number

Fig. (4.4) The best and the current solutions versus iteration number for Example 1



Table (4.3) Comparison between the proposed STSA, LR and IP

Example | LR [29] IP [41] |Our STSA
Total Cost ($) 1 540895 - 538390
v 2 - 60667 59512
% Saving 1 0 - 0.46
” 2 - 0 1.9
No. Of Iterations 1 - - 1924
” 2 - - 616
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Table (4.4) Power sharing (MW) of the initial schedule (Example 1)

i

Unit Number

1 2 3 4 5 6 7

300.00

130.00

165.00

130.00

225.00

50.00

250.00

110.00

275.00

75.00

300.00

130.00

165.00

130.00

225.00

50.00

250.00

110.00

275.00

75.00
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130.00

165.00

130.00

225.00

50.00

250.00

110.00

275.00

75.00

300.00

130.00

165.00

130.00

225.00

50.00

250.00

110.00

275.00

75.00

300.00

130.00

165.00

130.00

225.00

50.00

250.00

110.00

275.00

75.00

300.00

130.00

165.00

130.00

225.00

50.00

250.00

110.00

275.00

75.00

300.00

232.97

165.00

130.00

225.00

130.63

250.00

186.40

275.00

75.00

300.00

395.67

165.00

163.06

225.00

181.18

250.00

338.65

296.14

85.30

ORI N B W] =

300.00

400.00

201.49

304.43

225.00

200.00

250.00

375.00

461.86

132.22

300.00

400.00

288.35

389.55

225.00

200.00

250.00

375.00

561.62

160.47

311.82

400.00

331.91

420.00

225.00

200.00

250.00

375.00

611.64

174.64

343.28

400.00

356.09

420.00

225.00

200.00

258.72

375.00

639.41

182.50

303.20

400.00

325.28

420.00

225.00

200.00

250.00

375.00

604.03

172.48

409.01

400.00

406.62

420.00

225.00

200.00

315.43

375.00

0.00

198.94

317.58

400.00

336.34

420.00

225.00

200.00

250.00

375.00

0.00

176.08

300.00

400.00

271.70

373.24

225.00

200.00

250.00

375.00

0.00

155.06

329.97

400.00

345.86

420.00

225.00

200.00

250.00

375.00

0.00

179.18

495.78

400.00

473.32

420.00

225.00

200.00

390.27

375.00

0.00

220.63

530.48

400.00

500.00

420.00

225.00

200.00

420.21

375.00

0.00

229.31

391.66

400.00

393.28

420.00

225.00

200.00

300.46

375.00

0.00

194.60

300.00

400.00

261.62

363.38

225.00

200.00

0.00

375.00

0.00

0.00

300.00

357.61

165.00

130.00

225.00

169.36

0.00

303.03

0.00

0.00

300.00

201.80

165.00

130.00

225.00

120.95

0.00

157.25

0.00

0.00

300.00

130.00

165.00

130.00

225.00

90.00

0.00

110.00

0.00

0.00




Table (4.5) Power sharing of the final schedule (MW) of Example 1

HR

2

3

4

Unit Number *

6

7

8

9

10

400.0

0.00

0.00

185.0

0.00

350.2

0.00

89.70

395.3

0.00

0.00

181.0

0.00

338.3

0.00

85.19

355.3

0.00

0.00

168.6

0.00

300.9

0.00

75.00

333.1

0.00

0.00

161.7

0.00

280.1

0.00

75.00

400.0

0.00

0.00

185.0

0.00

350.2

0.00

89.70

400.0

270.3

0.00

200.C

0.00

375.0

0.00

154.6

400.0

383.5

420.0

200.0

0.00

375.0

0.00

191.4

400.0

295.5

396.6

200.0

0.00

375.0

569.9

162.8

O |00~V W] ] e

400.0

468.0

420.0

200.0

0.00

375.0

768.0

218.9

10

400.0

444.6

420.0

200.0

358.0

375.0

741.0

211.2

11

400.0

486.3

420.0

200.0

404.8

375.0

788.9

224.8

12

400.0

514.1

420.0

200.0

436.0

375.0

820.8

233.9

13

400.0

479.3

420.0

200.0

397.0

375.0

780.9

222.6

14

400.0

388.9

420.0

200.0

295.6

375.0

677.1

193.2

15

400.0

310.0

410.8

200.0

250.0

375.0

586.5

167.5

16

400.0

266.6

368.2

200.0

250.0

375.0

536.6

153.4

17

400.0

317.3

417.9

200.0

250.0

375.0

594.8

169.8

18

400.0

458.5

420.0

200.0

373.6

375.0

757.0

215.8

19

400.0

486.3

420.0

200.0

404.8

375.0

788.9

224.8

20

400.0

375.0

420.0

200.0

280.0

375.0

661.2

188.6

21

400.0

0.00

404.8

200.0

0.00

375.0

579.5

165.5

22

400.0

0.00

0.00

200.0

0.00

375.0

524.9

150.0

23

396.4

0.00

0.00

181.4

0.00

339.3

297.1

85.58

24

377.6

0.00

0.00

175.5

0.00

321.7

275.0

0.00

*Units 1 and 5 are OFF all hours.
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Table (4.6) Load demand and hourly costs ($) of Example 1

HR | LOAD |ED-COST| ST-COST| T-COST
1 ] 1.025.00{ 9.670.0 - 9.670.0
2 | 1,000.00f 9.446.6 - 9,446.6
3 | 900.00 | 8,560.9 - 8,560.9
4 | 850.00 | 8,123.1 - 8,123.1
S ]1,025.00] 10,058.4 - 11,643.9
6 | 1,400.00] 13.434.1 | 1,585.54 | 13,434.1
7 11,970.00f 19,217.7 | 2,659.11 | 21,876.8
8 [2,400.00 23.902.0 | 2.850.32 | 26,752.4
9 12,850.00f 28,386.4 - 28,386.4
10 | 3,150.00] 31,701.7 | 2,828.66 | 34,530.4
11 | 3,300.00} 33,219.8 - 33,219.8
12 | 3,400.00] 34,242.1 - 34,242.1
13 13,275.00] 32,965.5 - 32,965.5
14 | 2,950.00] 29,706.3 - 29,706.3
15 | 2,700.00| 27,259.7 - 27,259.7
16 | 2,550.00] 25.819.8 - 25,819.8
17 | 2,725.00] 27,501.6 - 27,501.6
18 | 3,200.00] 32,205.7 - 32,205.7
19 | 3,300.001 33,219.8 - 33.219.8

20 |2,900.00] 29,212.5 - 29,212.5
21 }2,125.00] 20,698.4 - 20,698.4
22 | 1,650.00f 15.947.5 - 15,947.5
23 ] 1,300.00] 12,7354 - 12,735.4
24 4 1,150.00f 11,232.0 - 11,232.0

Total operating cost = $538390
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Table (4.7) Load demand and UCT of Example 2

Unit Number

1111111011
1111111011
1111111011
1111111011
1111111011
1111111011
1111111011
1111111011
1111111011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111101011
1111111011

Hour Load

1459.0

1
2
3
4
5
6
7
8
9

1372.0

1299.0

1285.0

1271.0

1314.0
1372.0

1314.0

1271.0
10 1242.0
11 1197.0
12 1182.0
13 1154.0
14 1138.0
15 1124.0
16 1095.0
17 1066.0
18 1037.0
19 993.0
20 978.0

963.0
22 1022.0
23 1081.0
24 1459.0

21
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Table (4.8) Load demand and UCT of Example 3

Unit Number **

1234 51014151617 181920212223

1 1820011010 10001111000

Hour Load

2 1800011010 10001111000

3 1720011010 00001111000

4 1700011010 00001111000

51750011010 10001111000

6 1910011010 11001111000

7 2050000010 11001111010

8 2400000010 11111111011

92600000010 11111111111

10 2600000010 11111111111

11 2620000011 11111111111

12 2580000001 11111111111

13 2590000000 11111111111
14 2570000000 11111111111

15 2500000000 11111111111

16 2350000000 11111111111
17 2390000000 1 1111111111

18 2480000000 1 1111111111

19 2580000000 11111111111

20 2620010010 1 1111111111

21 2600010010 11111111111

22 2480010010 11111111111

23 2150010010 10111111100

24 1900010010 10101111000
**Units 6,7,8,9 are OFF all hours. Units 11,12,13,24,25 and 26 are ON all hours.
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4.6 ADVANCED TABU SEARCH TECHNIQUES

Advanced TS procedures are recommended for sophisticated problems [105-116].

These procedures include in addition to the STM, the ITM, the LTM and the SO.

4.6.1 INTERMEDIATE TERM MEMORY

Intermediate Term Memory (ITM) function is employed within TS to achieve
intensification in a specified region in the solution space at some periods of the search
[105-107]. ITM operates by recording and comparing features of a selected number of
best trial solutions generated during a particular period of the search. Features that are
common to all or a compelling majority of these solutions are taken to be a regional
attribute of good solutions. The method then seeks new solutions that exhibit these
features by correspondingly restricting or penalizing available moves during a subsequent
period of search. Different variants of implementation for the ITM are presented in

Section 4.7.1.

4.6.2 LONG TERM MEMORY

Long Term Memory (LTM) function is used to perform global diversification of the
search [105-107]. LTM function employs principles that are roughly the reverse of those
for ITM. It guides the search to regions far from the best solutions examined earlier.

Different implementations of LTM are introduced in Section 4.7.2.
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4.6.3 STRATEGIC OSCILLATION

Strategic Oscillation (SO) is a major aspect of the proposed ATSA [105-107,111].
It allows the search to cross the feasible region in both directions to move the search into
new regions and also to intensify the search in the neighbor of the bounds.

In the following section we describe the details of the proposed ATSA as applied to

the UCP.

4.7 ADVANCED TABU SEARCH ALGORITHM FOR UNIT

COMMITMENT (ATSA)

The proposed ATSA contains four major steps:
e First, applying STM procedures.

e Second, applying [TM procedures.

Third, applying LTM procedures.

Fourth, applying SO procedures.

Fig. (4.5) shows a flow chart for the proposed ATSA.

In the following subsections a description of the different components of the
algorithm as applied to the UCP is presented. These components include the TL

construction, the [TM, the LTM, and the SO implementations.



i Apply short term TS memory procedures

v

Create and keep a list of a specified number of best solutions ( e.g. 5 to 30)

No
Does the rate of finding

best solutions fall
below threshold?

Is the termination
criterion satisfied ?

For a fixed number of iterations apply Intermediate
term TS memory procedures (Intensification)

v

For a fixed number of iterations apply Long term TS
memory procedures (Diversification)

v

For a fixed number of iterations apply Strategic Oscillation

procedures (Diversification)

Fig.(4.5) Flow Chart of the Proposed ATSA for the UCP
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4.7.1 INTERMEDIATE TERM MEMORY IMPLEMENTATION

The ITM is used to intensify the search in a specified region. Two different

approaches are used to achieve this function

4.7.1.1 APPROACH (1)

In this approach the best K-solutions (K= 35 to 20) are recorded during the STM
search. These best solutions are then compared to find the units that have the same
schedule in a prespecified percentage of these K-solutions ( in our implementation, it is
taken to be 70%).These units are then included in an intermediate memory TL. Ata
particular period, according to the algorithm, the TL of the ITM is activated and the

search is restricted to be in the neighborhood of the best solutions.

4.7.1.2 APPROACH (2)

In this approach the K-best solutions are recorded during the STM search. Then, the
ITM procedure starts always with one of these best solutions at a time and performs a
fixed number of iterations and repeats this for the K-solutions. The best solutions list is

also updated during the search.

4.7.2 LONG TERM MEMORY IMPLEMENTATION

The LTM procedure is designed to drive the search into new regions. The LTM
function is activated when a local minimum is reached during the STM search. In this
procedure, the search is directed to points that are far from that of the recorded best
solutions. This is achieved by activating the TL of the ITM and restricting the generated

trial solutions to be far from the units that were tabu in the ITM procedures.
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4.7.3 STRATEGIC OSCILLATION IMPLEMENTATION

In this procedure a specified number of moves are performed beyond the feasible
boundary in a given direction before permitting a return to the feasible region. These

number of moves could be changed each time this procedure is started.

4.8 NUMERICAL RESULTS OF THE ATSA

Considering the proposed ATSA, a computer program has been implemented. It has
been concluded (in Section 4.4.1.6) that Approach 5 of constructing TL is the most
efficient one since it requires less memory space with better solution quality.
Accordingly, this Approach has been utilized in the implementation of the TL as part of
the ATSA.

The three previously described examples from the literature [29,41,62,63], are
solved.

Table (4.9) shows a comparison of daily operating costs for the proposed ATSA,
and the STSA implemented in Section 4.3 for Examples 1,2, and 3.

Table (4.10) presents the comparison of results obtained in the literature for
Examples 1 and 2, the STSA and the proposed ATSA.

From the last two tables, itis obvious that using the ATSA procedures improves
the solution quality of the three examples. Both the required number of iterations and the
solution cost are improved when using the advanced TS procedure. This emphasizes the
effectiveness of using this approach, in addition to the STM, to solve difficult problems

such as the UCP.
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Tables (4.11) and (4.12) show detailed results for Example 1 [29]. Table (4.11)
shows the load sharing among the committed units in the 24 hours. Table (4.12) gives the
hourly load demand, and the corresponding economic dispatch costs, start-up costs, and
total operating cost. For Example 3, Tables (4.13), (4.14) and (4.15) show detailed results

and the corresponding total operating cost obtained is $660864.8750

Table (4.9) Comparison between the proposed ATSA and the STSA

Example| STSA ATSA | % Saving
Total Cost ($) 1 538390 | 537686 0.13
v 2 59512 59385 0.21
’s 3 662583 660864 0.26
No. of iterations 1 1924 1235 35.8
’ 2 616 138 77.5
’ 3 3900 2547 34.6

Table (4.10) Comparison between the ATSA, LR, IP and the STSA

Example | LRJ29] | IPJ41] | STSA | ATSA
Total Cost (3)] 1 540895 - 538390 | 537636
. 2 - 60667 | 59512 | 59385
% Saving 1 0 . 0.46 0.59
. 2 ; 0 1.9 2.1
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Table (4.11) Power sharing (MW) of Example 1

Hour| Unit Number**
2 3 4 6 7 8 9 10

400.00] 0.00 | 0.00 |185.04] 0.00 [350.26] 0.00 | 89.70

395.36] 0.00 | 0.00 [181.09{ 0.00 [338.36/ 0.00 | 85.19

355.38] 0.00 { 0.00 {168.67 0.00 {300.95 0.00 | 75.00

333.13] 0.00 | 0.00 [161.75] 0.00 [280.12f 0.00 | 75.00

400.00{ 0.00 | 0.00 }185.04] 0.00 {350.26] 0.00 | 89.70

400.00{ 0.00 ]295.68]200.00| 0.00 |375.00] 0.00 [129.32

400.00; 0.00 |342.97{200.00] 0.00 |375.00/507.02]145.01

400.00)295.59]396.65/200.00] 0.00 |375.00}569.93]162.83

400.00{468.07|420.00{200.00] 0.00 {375.00/768.01]218.92

olvloolwlanalwira)—

400.00{444.60}420.00]200.00]|358.05]375.00/741.06{211.29

400.001486.30/420.00/200.001404.89)375.00{788.95[224.86

—
—

400.00)514.11}420.00{200.00436.09/375.00|820.89]233.91

—
N

400.001479.35|420.00)200.00{397.09)375.00| 780.96{222.60

—
W

400.00{388.98{420.00/200.00]295.63]375.00|1677.18/193.20
400.00{310.07]410.84]200.00]250.00|375.00|586.56{167.54

._.
~

—
W

400.00)266.64)|368.27|200.00/250.00{375.00|536.68]153.41

—
(@)

400.00)317.31{417.93}200.00]250.00{375.00{594.87(169.89
400.00{458.51)420.00]200.00)373.65]375.00|757.03{215.81

p—
~

—
o0

400.00)486.301420.00{200.00/404.89|375.00|788.95]224.86
400.00{375.08]420.00{200.00)280.03|375.00{661.21(188.68

—
\O

[\ 8]
(=)

400.00| 0.00 |404.87]200.00f 0.00 |375.00(579.57}165.56
400.00] 0.00 | 0.00 [200.00| 0.00 }375.00{675.00] 0.00
400.00| 0.00 | 0.00 |191.64| 0.00 |370.14/338.22] 0.00
377.64] 0.00 | 0.00 {175.58| 0.00 {321.78/275.00{ 0.00
** Units 1 and 5 are OFF at all hours.

N
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N
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W
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Table (4.12) Load demand and hourly costs ($) of Example 1

HR] LOAD |ED-COST|ST-COST| T-COST
1 1,025 9,670.0 - 9,670.0
2 1,000 9,446.6 - 9,446.6
3 900 8,560.9 - 8,560.9
4 850 8,123.1 - 8,123.1
5 1,025 9,670.0 - 9,670.0
6] 1,400 13,434.1 | 1,706.0 | 15,140.0
71 1,970 19,217.7 | 2,659.1 | 21,876.8
81 2400 [ 23,8155 2,685.1 | 26,500.6
91 2,850 | 28,253.9 - 28,253.9
10] 3,150 | 31,701.7 | 3,007.6 | 34,709.3

11] 3,300 | 33,219.8 - 33,219.8
121 3,400 | 34,242.1 - 34,242.1
13] 3,275 | 32,965.5 - 32,965.5
14] 2,950 [ 29,706.3 - 29,706.3
150 2,700 | 27,259.7 - 27,259.7
16] 2,550 | 25,819.8 - 25,819.8
17] 2,725 | 27,501.6 - 27,501.6
18] 3,200 | 32,205.7 - 32,205.7
191 3,300 [ 33,219.8 - 33,219.8
20] 2,900 | 29,212.5 - 29,212.5
211 2,125 | 20,698.4 - 20,698.4
221 1,650 15,878.2 - 15,878.2
231 1,300 12,572.8 - 12,572.8
241 1,150 11,232.0 - 11,232.0

Total operating cost = $537686
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Table (4.13) Power sharing (MW) of Example 3 ( units 1-13)

112

Z

2

3

4

5

Unit Number

6

7

8

9

10 11

12

13

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

76.00

54.80

15.20

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

76.00

50.00

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

28.40

15.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

15.20

15.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

58.40

15.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

66.40

15.20

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

O[O\ W] AW —

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

O

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

Pt
o

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

—
b

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

p—
N

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

—
w

0.00

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

ot
S

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

—
(%]

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

p—
=)}

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

—
2

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

—
o0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

—
\O

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

N
o

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

[\
ey

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

N
[\

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

N
w

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

64.10

(&)
S

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

15.20

15.20

15.20

15.20




Table (4.14) Power sharing (MW) of Example 3 ( units 14-26)
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Z

14

15

16

17

18

Unit Number

19

20

21

22

23

24

25

26

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

343.2

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

69.60

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0] | O\ ] Bl W N —

0.00

100.0

100.0

155.0

155.0

155.0

155.0

150.6

68.95

0.00

350.0

350.0

350.0

O

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

122.6

0.00

350.0

350.0

350.0

—
o

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

122.6

0.00

350.0

350.0

350.0

[y
—

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

142.6

0.00

350.0

350.0

350.0

—t
[\

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

102.6

0.00

350.0

350.0

350.0

b
(98]

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

112.6

0.00

350.0

350.0

350.0

b
'S

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

96.60

0.00

350.0

350.0

350.0

—
W

100.0

100.0

100.0

155.0

155.0

155.0

155.0

157.0

68.95

0.00

350.0

350.0

350.0

[
=)}

100.0

100.0

38.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

pt
3

100.0

100.0

78.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

—
oo

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

)
O

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

N
[

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

149.0

0.00

350.0

350.0

350.0

N
—

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

129.0

0.00

350.0

350.0

350.0

N
[\S]

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

N
w

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

[\
BN

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

331.3

350.0

350.0




Table (4.15) Load demand and hourly costs ($) of Example 3

LOAD

ED-COST

ST-COST

T-COST

1.82E+03

1.79E+04

0.00E+00

1.79E+04

1.80E+03

1.76E+04

0.00E+00

1.76E+04

1.72E+03

1.66E+04

0.00E+00

1.66E+04

1.70E+03

1.63E+04

0.00E+00

1.63E+04

1.75E+03

1.70E+04

0.00E+00

1.70E+04

1.91E+03

1.93E+04

1.60E+02

1.94E+04

2.05E+03

2.17E+04

1.00E+02

2.18E+04

2.40E+03

2.98E+04

7.00E+02

3.05E+04

xooo\xmm-huw.-.%

2.60E+03

3.42E+04

1.00E+02

3.43E+04

2.60E+03

3.42E+04

0.00E+00

3.42E+04

2.62E+03

3.46E+04

0.00E+00

3.46E+04

2.58E+03

3.37E+04

0.00E+00

3.37E+04

2.59E+03

3.39E+04

0.00E+00

3.39E+04

2.57E+03

3.33E+04

0.00E+00

3.33E+04

2.50E+03

3.17E+04

0.00E+00

3.17E+04

2.35E+03

2.85E+04

0.00E+00

2.85E+04

2.39E+03

2.92E+04

0.00E+00

2.92E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.62E+03

3.44E+04

0.00E+00

3.44E+04

2.60E+03

3.40E+04

0.00E+00

3.40E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.15E+03

2.47E+04

0.00E+00

2.47E+04

1.90E+03

2.14E+04

0.00E+00

2.14E+04

Total operating cost = 660864.8750
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4.9 SUMMARY

In this chapter, the application of the TS method for the UCP is introduced for the
first time. Two new algorithms for the UCP are proposed and tested. The first algorithm
uses the STM procedure of the TS method, while the second algorithm is based on
advanced TS procedures. Different criteria for constructing the TL restrictions for the
UCP are implemented and compared. Several examples are solved to test the proposed
algorithms.

The computational results of the two algorithms along with a comparison with
previously published works are presented. The results showed that the algorithm based on
the STM outperforms the results reported in the literature. On the other hand, both the
required number of iterations and the solution cost are improved when using the
advanced TS procedure in the second algorithm. This emphasizes the effectiveness of
using this approach, along with the STM, to solve difficult problems such as the UCP.

In the next chapter, a genetic-based algorithm for the UCP will be introduced.
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CHAPTER FIVE

A NEW GENETIC ALGORITHM APPROACH FOR

UNIT COMMITMENT

5.1 INTRODUCTION

Genetic algorithms(GAs) have been developed by John Holland, his colleagues,
and his students at the University of Michigan in the early 1970°s [117]. GAs have
become increasingly popular in recent years in science and engineering disciplines [117-
125]. GAs have been quite successfully applied to optimization problems like wire
routing, scheduling, adaptive control, game playing, cognitive modeling, transportation
problems, traveling salesman problems, optimal control problems, etc.

In this chapter a new implementation of a Genetic Algorithm (GA) to the UCP is
proposed. Several examples are solved to test the proposed algorithm.

In the next section, an overview of the GA method is presented, followed in Section
5.3, by the new proposed implementation of the GA as applied to solve the UCP along
with the description of different GA components. Section 5.4 presents the detailed

description of a local search algorithm that has been used with the GA. In Section 5.5
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the computational results along with a comparison with previously published work are

presented.

5.2 THE GENETIC ALGORITHM APPROACH

5.2.1 OVERVIEW

GAs are general-purpose search techniques based on principles inspired from the
genetic and evolution mechanisms observed in natural systems and populations of living
beings. Their basic principle is the maintenance of a population of solutions to a problem
(genotypes) in the form of encoded information individuals that evolve in time. A GA for
a particular problem must have the following five components [119]:

e A genetic representation for potential solution to the problem,

e A way to create an initial population of potential solutions,

e An evaluation function that plays the role of the environment, rating solutions in
terms of their “fitness”,

e Genetic operators that alter the composition of children,

Values for various parameters that the GA uses ( population size, probabilities of
applying genetic operators, etc.).

A genetic search starts with a randomly generated initial population within which
each individual is evaluated by means of a fitness function. Individuals in this and
subsequent generations are duplicated or eliminated according to their fitness values.
Further generations are created by applying GA operators. This eventually leads to a

generation of high performing individuals [123].
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5.2.2 SOLUTION CODING

GAs require the natural parameters set of the optimization problem to be coded as a
finite-length string over some finite alphabet. Coding is the most important point in
applying the GA to solve any optimization problem. Coding could be ina real ora
binary form. Coded strings of solutions are called “chromosomes”. A group of these
solutions (chromosomes) are called population. Our proposed new method of coding is

presented in Section 5.3.2.

5.2.3 FITNESS FUNCTION

The fitness function is the second important issue in solving optimization problems
using GAs. It is often necessary to map the underlying natural objective function to a
fitness function through one or more mappings. The first mapping is done to transform
the objective function into a maximization problem rather than minimization to suit the
GA concepts of selecting the fittest chromosome which has the highest objective
function.

A second important mapping is the scaling of the fitness function values. Scaling is
an important step during the search procedures of the GA. This is done to keep
appropriate levels of competition throughout a simulation. Without scaling, early on there
is a tendency for a few superindividuals to dominate the selection process. Later on, when
the population has largely converged, competition among population members is less
strong and simulation tends to wander. Thus, Scaling is a useful process to prevent both
the premature convergence of the algorithm and the random improvement that may occur

in the late iterations of the algorithm. There are many methods for scaling such as linear,
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sigma truncation, and power law scaling [117]. Linear scaling is the most commonly used
and will be discussed in details in Section 5.3.3. In the sigma truncation method,
population variance information to preprocess raw fitness values prior to scaling is used.
It is called sigma (o) truncation because of the use of population standard deviation

information, a constant is subtracted from raw fitness values as follows:

f =f—(f —c.0) 5.1

In equation (5.1) the constant c is chosen as a reasonable multiple of the population

standard deviation and negative results (f <0) are arbitrarily set to 0. Following sigma

truncation, fitness scaling can proceed as described without the danger of negative results.

5.2.4 GENETIC ALGORITHMS OPERATORS

There are usually three operators in a typical GA [123]. The first is the production
operator which makes one or more copies of any individual that posses a high fitness
value; otherwise, the individual is eliminated from the solution pool.

The second operator is the recombination (also known as the “crossover”) operator.
This operator selects two individuals within the generation and a crossover site and
performs a swapping operation of the string bits to the right hand side of the crossover
site of both individuals. The crossover operator serves two complementary search
functions. First, it provides new points for further testing within the hyperplanes already
represented in the population. Second, crossover introduces representatives of new
hyperpalnes into the population, which is not represented by either parent structure. Thus,

the probability of a better performing offspring is greatly enhanced.
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The third operator is the “mutation” operator. This operator acts as a background
operator and is used to explore some of the unvisited points in the search space by
randomly flipping a “bit” in a population of strings. Since frequent application of this
operator would lead to a completely random search, a very low probability is usually

assigned to its activation.

5.2.5 CONSTRAINTS HANDLING (REPAIR MECHANISM)

Constraints handling techniques for the GAs can be grouped into a few categories
[119]. One way is to generate a solution without considering the constraints but to include
them with penalty factors in the fitness function. This method has been used previously
[68-73].

Another category is based on the application of a special repair algorithm to correct
any infeasible solution so generated.

The third approach concentrates on the use of special representation mappings
(decoders) which guarantee (or at least increase the probability of) the generation of a
feasible solution or the use of problem-specific operators which preserve feasibility of the
solutions.

In our implementation, we are generating always solutions that are satisfying the
minimum up/down constraints. However, due to applying the crossover and mutation
operations the load demand and/or the reserve constraints might be violated. A
mechanism to restore the feasibility is applied by committing randomly more units at the
violated time periods and keeping the feasibility of the minimum up/down time

constraints.
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5.2.6 A GENERAL GENETIC ALGORITHM

In applying the GAs to optimization problems, certain steps for simulating the
evolution must be performed. These are described as follows [118]:
Step (1): [Initialize a population of chromosomes.
Step (2): Evaluate each chromosomes in the population.
Step (3): Create new chromosomes by mating current chromosomes; apply mutation
and recombination as the parent chromosomes mate.
Step (4): Delete members of the population to make room for the new chromosomes.
Step (5): Evaluate the new chromosomes and insert them into the population.
Step (6): If the termination criterion is satisfied, stop and return the best chromosomes:

otherwise, go to Step (3).

5.3 THE PROPOSED NEW IMPLEMENTATION OF A GENETIC

ALGORITHM FOR THE UCP

5.3.1 OVERVIEW

The proposed new GA implementation for the UCP differs from other GA
implementations in three respects[75]. First, the UCP solution is coded usinga mix
between binary and decimal representations, thus saving computer memory as well as
computation time of the GA search procedure. Second, the fitness function is based only
on the total operating cost and no penalties are included. Third, to improve the fine local
tuning capabilities of the proposed GA, a special mutation operator based on a local

search procedure, is designed.
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The proposed algorithm involves four major Steps[75]:
e Creating an initial population by randomly generating a set of feasible solutions
(chromosomes), using the rules presented in Section 2.4.
e Evaluating each chromosome by solving the economic dispatch problem, using the
algorithm described in Section 2.6.
¢ Determining the fitness function for each chromosome in the population.
» Applying GA operators to generate new populations as follows:
e Copy the best solution from the current to the new population
e Generate new members (typically 1-10% of the population size), as neighbors to
solutions in the current population, and add them to the new population.
e Apply the crossover operator to complete the members of the new population.
e Apply the mutation operator to the new population.
The flow chart of Fig.(5.1) shows the main steps of the proposed algorithm.
In the following sections, the implementations of the different components of the

proposed algorithm are presented.
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Read the data and initialize the variables of GA

v

Generate randomly the initial population of the GA, and
let it be the current population

Calculate the objective function for the current population
—> members, by solving the EDP.

'

Calculate and scale the fitness functions for the current
population members.

Yes

Is
the convergence
criteria
satisfied?

No

Copy the best members(KB) in the current population to
the new population

Use the rules of generating randomly feasible solutions to

generate new members (KN) in the new population, as

neighbors to randomiy selected members in the current
population

']

Apply the crossover operation to the current population to
complete the new population members

v

Apply the mutation operation to the members of the new
population

']

Let the current population be the new population

Fig.(5.1) Flow Chart of the proposed GA for UCP
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5.3.2 SOLUTION CODING

Since the UCP lends itself to the binary coding in which a zero denotes the OFF
state and a one represents the ON state, all published works used the binary coding [68-
73]. The UCP solution is represented by a binary matrix (U) of dimension TxN (Fig.(5.2-
a)). A candidate solution in the GA could then be represented by a string whose length is
the product of the scheduling periods and the number of generating units TxN. In the GA
a number of these solutions, equal to the population size (INPOP), is stored. The required
storage size is then equal to NPOPxTxN which is a large value even for a moderate size
system.

The new proposed method for coding is based on a mix between a binary number
and its equivalent decimal number. Each column vector of length T in the solution matrix
(which represents the operation schedule of one unit) is converted to its equivalent
decimal number. The solution matrix is then converted into one row vector
(chromosome) of N decimal numbers, (Ul,U2,....UN); each represents the schedule of
one unit as shown in Fig.(5.2-b). Typically the numbers U1,U2, ..,UN are integers
ranging between 0 and 2N - 1. Accordingly, a population of size NPOP can be stored in a
matrix of dimension NPOPxN as arbitrarily shown in Fig.(5.2-c). Hence, the proposed

method requires only 1/T of the storage required if a normal binary coding is used.
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HR Unit Number
1 2 3 4 N
I 1 1 0 0 1
2 I 1 0 0 1
3 1 0 1 0 0
T 0 1 0 1 0

Fig.(5.2-a) The binary solution matrix U

LUl U2 u3fus| . [ . [ . JUN]

Fig.(5.2-b) The equivalent decimal vector (1xN)
(one chromosome)

23 14 | 45 | 56 . . . 62
34 | 52 | 72 | 18 . . . 91
5.1 36 | 46 | 87 . . 2.1

Fig.(5.2-c) Population of size NPOPxN
(NPOP chromosomes)

5.3.3 FITNESS FUNCTION
Unlike the previous solutions of the UCP using GA [68-73], the fitness function is

taken as the reciprocal of the total operating cost in (2.1), since we are always generating

feasible solutions.

The fitness function is then scaled to prevent the premature convergence. Linear

scaling is used. This requires a linear relationship between the original fitness function (f)

and the scaled one (fs ) as follows [117]:
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fs =af+b (5.2)
a= (C - 1)fav /(fmax - fmin) (53)
b=(1-a)fay 54

where: c: is a parameter between 1.2 and 2,
fmax, fmin, fav: are maximum, minimum and average values of the original fitness

functions respectively.

5.3.4 SELECTION

The selection of chromosomes for applying various GA operators is based on their
scaled fitness function in accordance to the roulette wheel selection rule. The roulette
wheel slots are sized according to the accumulated probabilities of reproducing each

chromosome.

5.3.5 CROSSOVER

To speed up the calculations, the crossover operation is performed between two
chromosomes in their decimal form. A two points crossover operation is used. The
following steps are applied to perform the crossover operation:

e Select two parents according to the roulette wheel rule.

e Select randomly two positions in the two chromosomes.

e Exchange the bits between the two selected positions in the two parents to produce
two children ( Fig.(5.3)).

e Decode the two children into their binary equivalent and check for reserve

constraints violation.
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e If the reserve constraints are not satisfied apply the repair mechanism (described in

Section 5.2.5) to restore feasibility of the produced children.

L 12 | 34 | 45 | 62 | 93 [ 72 | 82 [ 32 |

| 52 ] 81 ] 69 | 55 | 26 | 38 [ 57 | 76 |
Two Parents

L 12 | 34 ] 69 | 55 [ 26 [ 72 ] 82 [ 32 |

| 52 [ 81 ] 45 | 62 ] 93 | 38 ] 57 | 76 |
Two children

Fig.(5.3) Two points cross over example
5.3.6 MUTATION

The crossover operation explained in the last section is not enough for creating a
completely new solution. The reason is that it exchanges the schedule of units as black
boxes among different chromosomes without applying any changes in the schedules of
the units themselves.

Two new types of mutation operators are introduced to create changes in the units
schedules. The mutation operation is applied after reproducing all the new population
members. It is done by applying the probability test to the members of the new
population one by one. The mutation operation is then applied to the selected
chromosome. The details of the two mutation operators are described in the following

sections.
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5.3.6.1 MUTATION OPERATOR (1)
The first mutation operator is implemented as follows:

1. Select a chromosome as explained before and decode it into its binary equivalent.

2. Pick randomly a unit number and a time period.

3. Apply the rules in Section 2.4 to reverse the status of this unit keeping the
feasibility of the unit constraints related to its minimum up/down times.

4. For the changed time periods, check the reserve constraints.

5. If the reserve constraints are violated, apply the proposed correction mechanism and
go to the next step, otherwise go to the next step.

6. Decode the modified solution matrix from binary to decimal form and update the

new population.

5.3.6.2 MUTATION OPERATOR (2)

The second mutation operator is based on a local search algorithm to perform fine
tuning on some of the chromosomes in the new generated population. The selection of
chromosomes for applying this type of mutation could be random or based on the roulette
wheel method.

The local search algorithm steps are described in details as follows:

1. Decode the selected chromosome into its binary form.

2. Sort the time periods in a descending order according to the difference between the

committed units capacity and the load demand.
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3. Identify the time periods at which the committed units capacity is greater than 10%
above the load plus the desired reserve. These time periods have a surplus of
committed power capacity.

4. At the time periods of surplus capacity, sort the committed units in an ascending
order according to their percentage loading.

5.Identify the units that have a percentage loading less than 20% above their
minimum output limits. These units are the costlier units among the committed
units in the respective time periods, since they are lightly loaded.

6. Take the time periods, according to their order found in (2) and consider switching
off the underloaded units one at a time, according to their order.

7. Check the feasibility of the solution obtained . If it is feasible, go to Step (8),
otherwise go to Step (6).

8. Calculate the objective function of the solution obtained by solving the economic
dispatch problem for the changed time periods.

9. Decode the new solution obtained to its decimal equivalent and replace the old

one in the new population.

5.3.7 ADAPTIVE GA OPERATORS

The search for the optimal GA parameters setting is a very complex task. To
achieve good performance of the GA, an adaptive scheme to control the probability rate
of performing the crossover and mutation operators is designed.

The crossover rate controls the frequency with which the crossover operator is

applied. The higher the crossover rate, the more quickly new structures are introduced
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into the population. If the crossover rate is too high, high-performance structures are
discarded faster than selection can produce improvements. If the crossover rate is too low,
the search may stagnate due to the lower exploration rate. In our implementation, the
crossover rate is initialized with a high value (typically between 0.6 and 0.8) and is then
decreased during the search according to the convergence rate of the algorithm
(decrement value is 0.01).

Mutation is a secondary search operator which increases the variability of the
population. A low level of mutation serves to prevent any given bit position from
remaining forever converged to a single value in the entire population, and consequently
increases the probability of entrapment at local minima. A high level of mutation yields
an essentially random search, which may lead to very slow convergence. To guide the
search, the mutation rate starts at a low value (between 0.2 and 0.5) then it is incremented

by 0.01 as the algorithm likely converged to a local minimum.

5.4 NUMERICAL EXAMPLES

In order to test the proposed algorithm, three systems are considered.

Preliminary experiments have been performed on the three systems to find the most
suitable GA parameters settings. The following control parameters have been chosen after
running a number of simulations: population size=50, initial value of crossover rate=0.8,
decrement value of crossover=0.01, initial value of mutation rate=0.2, increment value of
mutation=0.01, local search mutation rate=0.1, elite copies=2, and the maximum number

of generations=1000.
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Different experiments were carried out to investigate the effect of the local search
mutation on the results. It was found that the proposed algorithm with local search
performs better than the simple GA without local search , in terms of both solution
quality and number of iterations.

Table(5.1) presents the comparison of results obtained in the literature (LR and IP)
for Examples 1 and 2.

Fig.(5.4) shows progress in the best objective function versus the generation number.
The algorithm converges after about 400 generations, which is relatively fast.

Tables (5.2), (5.3) and (5.4) show detailed results for Example 1 [29]. Table (5.2)
shows the load sharing among the committed units in the 24 hours. Table (5.3) gives the
hourly load demand and the corresponding economic dispatch costs, start-up costs, and
total operating cost. Table (5.4) presents the final schedule of the 24 hours, given in Table
(5.2), in the form of its equivalent decimal numbers.

Tables (5.5), (5.6), (5.7) and (5.8) also present the detailed results for Example 3
with a total operating cost of $661439.8. Comparison of the results for this example with

other methods is presented in Chapter (7).
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Table (5.1) Comparison between LR, IP, and the proposed GA

Example | LR [29] IP [41] GA
Total Cost (3) 1 540895 - 537372
v 2 - 60667 59491
% Saving 1 - 0.65
” 2 - 1.93
Generations No 1 - 411
2 2 - 393
6.0E+5 —.
58E+5 —
56E+5 —
:
|
54E+5 —|
|
|
5.2E+5 _{ ‘ , : . —
0 200 400 600 800 100

Generation Number

Fig.(5.4) Convergence of the proposed GA
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Table (5.2) Power sharing (MW) of Example 1

2

2

3

4

Unit Numbr**

6

7

8

9

10

400.0

0.0

0.0

185.0

0.0

350.3

0.0

89.7

395.4

0.0

0.0

181.1

0.0

3384

0.0

85.2

355.4

0.0

0.0

168.7

0.0

301.0

0.0

75.0

333.1

0.0

0.0

161.8

0.0

280.1

0.0

75.0

400.0

0.0

0.0

185.0

0.0

350.3

0.0

89.7

400.0

0.0

29'5 7

200.0

0.0

375.0

0.0

129.3

400.0

0.0

343.0

200.0

0.0

375.0

507.0

145.0

400.0

295.6

396.7

200.0

0.0

375.0

569.9

162.8

N V=1 0] ENTE- N (V] N (O8] N P

400.0

468.1

420.0

200.0

0.0

375.0

768.0

218.9

400.0

444.6

420.0

200.0

358.1

375.0

741.1

211.3

Yt
—

400.0

4863

420.0

200.0

404.9

375.0

789.0

224.9

—
N

400.0

514.1

420.0

200.0

436.1

375.0

820.9

233.9

—
[¥S)

400.0

479.4

420.0

200.0

397.1

375.0

781.0

222.6

[—
N

400.0

389.0

420.0

200.0

295.6

375.0

677.2

193.2

—
W

400.0

310.1

410.8

200.0

250.0

375.0

586.6

167.5

—
=)

400.0

266.6

368.3

200.0

250.0

375.0

536.7

153.4

—
~

400.0

317.3

417.9

200.0

250.0

375.0

594.9

169.9

—
(=]

400.0

458.5

420.0

200.0

373.7

375.0

757.0

215.8

—
o

400.0

486.3

420.0

200.0

404.9

375.0

789.0

224.9

[\®]
(=]

400.0

0.0

420.0

200.0

442.2

375.0

827.2

235.7

N
[y

400.0

0.0

404.9

200.0

0.0

375.0

579.6

165.6

N
N

400.0

0.0

0.0

200.0

0.0

375.0

675.0

0.0

N
(U8

400.0

0.0

0.0

191.6

0.0

370.1

338.2

0.0

[\
s

377.6

0.0

0.0

175.6

0.0

321.8

275.0

0.0

**Units 1,5 are OFF all hours.
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Table (5.3) Load demand and hourly costs ($) of Example 1

HR| LOAD |ED-COST]ST-COST| T-COST
1 1025 9670.04 0.00 9670.04
2 1000 9446.62 0.00 9446.62
3 900 8560.91 0.00 8560.91
4 850 8123.13 0.00 8123.13
5 1025 9670.04 0.00 9670.04
6 1400 13434.10 | 1705.97 | 15140.00
7 1970 19217.70 | 2659.11 | 21876.80
8 2400 | 23815.50 | 2685.07 | 26500.60
9 2850 | 28253.90 0.00 28253.90
10/ 3150 | 31701.70 | 3007.58 | 34709.30
11] 3300 | 33219.80 0.00 33219.80
12| 3400 | 34242.10 0.00 34242.10
131 3275 32965.50 0.00 32965.50
14 2950 | 29706.30 0.00 29706.30
15 2700 | 27259.70 0.00 27259.70
16 2550 | 25819.80 0.00 25819.80
17} 2725 27501.60 0.00 27501.60
18 3200 | 32205.70 0.00 32205.70
19 3300 33219.80 0.00 33219.80

20 2900 | 28899.00 0.00 28899.00
21 2125 20698.40 0.00 20698.40
221 1650 15878.20 0.00 15878.20
23] 1300 12572.80 0.00 12572.80
24] 1150 11232.00 0.00 11232.00

Total operating cost =$537371.94
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Table (5.4) The UCT of Example 1 in its equivalent decimal form (best

chromosome)
Unit Number
1,6 2,7 3,8 4,9 5,10
0 16777215 524160 2097120 0
16777215 | 1048064 | 16777215 | 16777152 | 2097151

Table (5.5) Power sharing (MW) of Example 3 (units 1-13)
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2

1

2

3

4 5

Unit Number

6 7

8 9

10

11

12

13

0.00

0.00

0.00

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

0.00

76.00

54.80

15.20

0.00

0.00

0.00

0.00 | 0.00

0.00 ] 0.00 | 0.00 | 4.00

0.00

0.00

76.00

50.00

2.40

0.00

0.00

0.00 ] 0.00

0.00 | 0.00 | 0.00 | 4.00

0.00

0.00

28.40

15.20

2.40

0.00

0.00

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

0.00

0.00

15.20

15.20

2.40

0.00

0.00

0.00 | 0.00

0.00 ] 0.00 | 0.00 | 4.00

0.00

0.00

58.40

15.20

2.40

0.00

0.00

0.00 { 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

66.40

15.20

0.00

0.00

2.40

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00 ] 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00 | 0.00

0.00 ; 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

240

0.00 | 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 ] 0.00

0.00 | 0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00  0.00 | 0.00 | 4.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 | 0.00 | 0.00 | 0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 | 0.00 | 0.00 { 0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 | 0.00 | 0.00 | 0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 } 0.00 | 0.00 | 0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 ] 0.00 | 0.00 | 0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 ] 0.00 | 0.00 | 0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00 | 0.00

0.00 | 0.00 | 0.00 | 0.00

76.00

76.00

76.00

64.10
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0.00

0.00

0.00

0.00 ] 0.00

0.00 | 0.00 | 0.00 | 0.00

15.20

15.20

15.20

15.20




Table(5.6) Power sharing (MW) of Example 3 (units 14-26)

g

14

15

16

17

18

Unit Number

19

20

21

22

23

24

25

26

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

50.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

343.2

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

69.60

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

100.0

100.0

155.0

155.0

155.0

155.6

150.6

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

122.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

122.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

142.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

102.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

112.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

92.60

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

153.0

68.95

0.00

350.0

350.0

350.0

100.0

100.0

34.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

100.0

100.0

78.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

149.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

129.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

rofrolro
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0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

331.3

350.0

350.0




Table (5.7) Load demand and hourly costs ($) of Example 3

Z

LOAD

ED-COST

ST-COST

T-COST

1.82E+03

1.79E+04

0.00E+00

1.79E+04

1.80E+03

1.76E+04

0.00E+00

1.76E+04

1.72E+03

1.66E+04

0.00E+00

1.66E+04

1.70E+03

1.63E+04

0.00E+00

1.63E+04

1.75E+Q3

1.70E+04

0.00E+00

1.70E+04

1.91E+03

1.93E+04

1.60E+02

1.94E+04

2.05E+03

2.17E+04

1.00E+02

2.18E+04

2.40E+03

2.98E+04

7.00E+02

3.05SE+04

Noll- 1R e NNV ) N (OS] ) T

2.60E+03

3.42E+04

1.00E+02

3.43E+04

2.60E+03

3.42E+04

0.00E+00

3.42E+04

2.62E+03

3.46E+04

0.00E+00

3.46E+04

2.58E+03

3.37E+04

0.00E+00

3.37E+04

2.59E+03

3.39E+04

0.00E+00

3.39E+04

2.57TE+03

3.35E+04

0.00E+00

3.35E+04

2.50E+03

3.18E+04

0.00E+00

3.18E+04

2.35E+03

2.87E+04

0.00E+00

2.87E+04

2.39E+03

2.92E+04

0.00E+00

2.92E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.62E+03

3.44E+04

0.00E+00

3.44E+04

2.60E+03

3.40E+04

0.00E+00

3.40E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.15E+03

2.47E+04

0.00E+00

2.47E+04

1.90E+03

2.14E+04

0.00E+00

2.14E+04

Total operating cost = 661439.8125
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Table (5.8) The UCT of Example 3 in its equivalent decimal form(best chromosome)

Unit Number
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26
60 0 16320 0 0 0 0
0 65535 | 16777184 16777185 | 16777215 [ 16777215 | 4194048
16777088 | 16777152 16777215 | 16777215 | 16777215 16777215} 16777088
16777088 0 16777215 16777215 | 16777215
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5.5 SUMMARY

In this chapter, a new implementation of a GA to solve the UCP is proposed.

The proposed new GA implementation [75] for the UCP differs from other GA
implementations in three respects. First, the UCP solution is coded using a mix between
binary and decimal representations. Second, the fitness function is based only on the total
operating cost and no penalties are included. Third, to improve the fine local tuning
capabilities of the proposed GA, a special mutation operator based on a local search
procedure, is designed. The detailed description of local search algorithm that has been
used with the GA are also presented.

The computational results along with a comparison with previously published work
showed the effectiveness of the proposed new approach in saving cost and computer
memory.

In the next Chapter, we introduce three new hybrids algorithms for the UCP.
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CHAPTER SIX

NEW HYBRID ALGORITHMS FOR UNIT

COMMITMENT

6.1 INTRODUCTION

In the last three chapters, we have proposed three different algorithms, based on SA,
TS, and GA methods, to solve the UCP. The effectiveness of the three methods to solve
the UCP has been proved. The main features of these methods were also investigated.
These methods, of course, have their own merits and drawbacks.

SA is a Markov chain Monte Carlo method, and therefore, it is memoryless. Hence,
the main problem is that SA will continue to jump up and down without noticing that the
movement is confined.

TS is characterized as a memory-based method, and therefore learning is achieved
during the search process.

GA is a global stochastic search method. The fine tuning capability when approaching
a local minimum is weak.

The competitive performance of the combinatorial optimization algorithms is still an

open issue. Recently, hybrid methods have come to the picture capturing the merits of
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different methods and exploring them in a form of hybrid scheme. It is often proved that a
hybrid scheme of some methods outperforms the performance of these methods as
individuals.

In this chapter we propose three different new hybrid algorithms for the UCP. The
proposed hybrid algorithms integrate the use of the previously introduced algorithms, SA,
TS, and GA. The bases of the hybridization of these algorithms are completely new ideas
and are applied to the UCP for the first time.

The next section introduces a hybrid algorithm of SA and TS which is called ST
algorithm. Section 6.3 presents the hybrid algorithm of GA and TS which is called GT
algorithm. In Section 6.4 the third hybrid algorithm integrating the three methods SA, TS,

and GA which is called GST algorithm is introduced.

6.2 HYBRID OF SIMULATED ANNEALING AND TABU SEARCH

6.2.1 THE PROPOSED ST ALGORITHM

Since the main feature of the TS method is to prevent cycling of solutions, we could
explore this point in refining the SA algorithm. The main idea in the proposed ST
algorithm is to use the TS algorithm to prevent the repeated solutions from being accepted
by the SA. This will save time and improve the quality of the solution obtained.

The proposed ST algorithm [93] may be described as an SA algorithm with the TS
algorithm used as a filter to reject the repeated trial solutions from being tested by the
SAA. The TS method is implemented as a preprocessor step in the SAA to test a set of

neighbors to the current solution. The trial solution which satisfies the tabu test is
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accepted. This accepted trial solution is then accepted or rejected according to the SA

test. The main steps of the ST algorithm are described in the flow chart of Fig.(6.1).

Initialize TS and SA parameters (K=0, TL=0, AV=0 & Cp=Cpo) | 1

Find randomly an initial feasible solution and let it be the 5
current and the best soltions
Initialize Markov chain length at this value of the control 3
—> parameter Cpk

']

Generate a set of neighbors to the current solution.
Calculate the operating costs of these solutions

—>

Apply TS test to accept one of these solutions. Update
current and best solutions. Update TS 5
parameters(TL&AV).

v

Apply SA test to accept or reject the trial solution accepted in the 6
previous step. Update current and best solutions

No

inal Markov chai
length reached ?

Set k=k+1 and Decrement the control parameter Cpk | 9

Fig.(6.1) Flow chart of the proposed ST algorithm for the UCP
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6.2.2 TABU SEARCH PART IN THE ST ALGORITHM

In the TS part of the ST algorithm, the STM procedures are implemented. In this
implementation, the TL is created using approach 5 which is explained in Section 4.4.
The tabu test (block 5) can be described as follows:
e Sort the set of trial solutions (neighbors) in an ascending order according to their
objective functions.
e Apply the tabu acceptance test in order until one of these solutions is accepted.
e Tabu acceptance test: If the trial solution (Uj) is NOT tabu or tabu but satisfy
the AV, then accept the trial solution as the current solution, set Uc =Uj and

Fc =Fj, and go to the SA test. Otherwise apply the test to the next solution.

6.2.3 SIMULATED ANNEALING PART IN THE ST ALGORITHM
In the SA part of ST algorithm we used the polynomial-time cooling schedule
(described in Section 3.3.1) to decrement the control parameter during the search (block
9). The SA test implemented in the ST algorithm (block 6) is described in the following
steps:
Let Uc,Fc be the SA current solution and the corresponding operating cost
respectively.
Let Uj,Fj be the trial solution accepted by the previous tabu test and the

corresponding operating cost respectively.
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SA acceptance test:
o If Fj<Fc, or exp[(Fc-Fj)/Cp]=>U(0,1), then accept the trial solution, and
update the current solution; set U¢c =Uj and F¢ =F; then go to block (7).

* Otherwise reject the trial solution and set Uj=Uc and F; = F_ then go to

block (7).

6.2.4 NUMERICAL RESULTS OF THE ST ALGORITHM

Considering the proposed ST algorithm, a computer program has been implemented.
The three examples, previously solved in the last chapters, are solved again using the ST
algorithm [29,41,62].

The following control parameters have been chosen after running a number of
simulations: maximum number of iterations=3000, tabu size=7, initial control parameter
(temperature)=5000, chain length=150, £ =0.00001, and & =0.3.

Table (6.1) shows a comparison of the results obtained for the three examples 1.2,
and 3 as solved by the SA, the TS and the ST algorithms. It is obvious that the ST
algorithm achieves reduction in the operating costs for the three examples. Also, the
number of iterations is less for Example 1, while for Examples 2 and 3 the ATSA
converges faster.

Table (6.2) also shows a comparison of the ST algorithm results with the results of
the LR and IP for Examples 1 and 2. It is obvious that significant cost savings are
achieved.

Detailed results for Example 1 are given in Tables (6.3) and (6.4). Table (6.3) shows

the load sharing among the committed units in the 24 hours. Table (6.4) gives the hourly
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load demand, and the corresponding economic dispatch costs, start-up costs, and total

operating cost.

Detailed results for Example 3 are given in Tables (6.5), (6.6) and (6.7).

Table (6.1) Comparison between SAA, STSA, ATSA and the ST algorithm

Example| SAA STSA | ATSA ST
Total Cost ($) 1 536622 | 538390 | 537686 | 536386
’ 2 59512 59512 | 59385 59385
v 3 662664 | 662583 | 660864 | 660596
Iterations No. 1 384 1924 1235 625
' 2 652 616 138 538
v 3 2361 3900 2547 2829

Table (6.2) Comparison between the LR, the IP and the ST algorithm

Example| LR [29] | IP[41] ST
Total Cost ($) 1 540895 - 536386
» 2 - 60667 | 59380

% Saving 1 0 - 0.83

v 2 - 0 2.11




Table (6.3) Power sharing (MW) of Example 1.

z

4

Unit Number

6

7

8

9

10

400.00

0.00

0.00

185.04

0.00

350.26

0.00

89.70

395.36

0.00

0.00

181.09

0.00

338.36

0.00

85.19

355.38

0.00

0.00

168.67

0.00

300.95

0.00

75.00

333.13

0.00

0.00

161.75

0.00

280.12

0.00

75.00

400.00

0.00

0.00

185.04

0.00

350.26

0.00

89.70

400.00

0.00

295.68

200.00

0.00

375.00

0.00

129.32

400.00

383.56

420.00

200.00

0.00

375.00

0.00

191.44

400.00

295.59

396.65

200.00

0.00

375.00

569.93

162.83
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400.00

468.07

420.00

200.00

0.00

375.00

768.01

218.92

400.00

444.60

420.00

200.00

358.05

375.00

741.06

211.29

400.00

486.30

420.00

200.00

404.89

375.00

788.95

224.86

400.00

514.11

420.00

200.00

436.09

375.00

820.89

233.91

400.00

479.35

420.00

200.00

397.09

375.00

780.96

222.60

400.00

388.98

420.00

200.00

295.64

375.00

677.18

193.20

400.00

310.07

410.84

200.00

250.00

375.00

586.56

167.54

400.00

266.64

368.27

200.00

250.00

375.00

536.68

153.41

400.00

317.31

417.93

200.00

250.00

375.00

594.87

169.89

400.00

458.51

420.00

200.00

373.65

375.00

757.03

215.81

400.00

486.30

420.00

200.00

404.89

375.00

788.95

224.86

400.00

375.08

420.00

200.00

280.03

375.00

661.21

188.68

400.00

215.96

318.62

200.00

0.00

375.00

478.49

136.93

400.00

217.46

320.12

200.00

0.00

375.00

0.00

137.42

400.00

165.00

246.88

0.00

0.00

375.00

0.00

113.12

396.36

165.00

163.80

0.00

0.00

339.29

0.00

85.55
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Table (6.4) Load demand and hourly costs ($) of Example 1

HR

LOAD

ED-COST

ST-COST

T-COST

1.03E+03

9.67E+03

0.00E+00

9.67E+03

1.00E+03

9.45E+03

0.00E+00

9.45E+03

9.00E+02

8.56E+03

0.00E+00

8.56E+03

8.50E+02

8.12E+03

0.00E+00

8.12E+03

1.03E+03

9.67E+03

0.00E+00

9.67E+03

1.40E+03

1.34E+04

1.06E+03

1.45E+04

1.97E+03

1.94E+04

1.63E+03

2.10E+04

2.40E+03

2.38E+04

1.82E+03

2.56E+04

2.85E+03

2.83E+04

0.00E+00

2.83E+04

3.15E+03

3.17E+04

2.06E+03

3.38E+04

3.30E+03

3.32E+04

0.00E+00

3.32E+04

3.40E+03

3.42E+04

0.00E+00

3.42E+04

3.28E+03

3.30E+04

0.00E+00

3.30E+04

2.95E+03

2.97E+04

0.00E+00

2.97E+04

2.70E+03

2.73E+04

0.00E+00

2.73E+04

2.55E+03

2.58E+04

0.00E+00

2.58E+04

2.73E+03

2.75E+04

0.00E+00

2.7SE+04

3.20E+03

3.22E+04

0.00E+00

3.22E+04

3.30E+03

3.32E+04

0.00E+00

3.32E+04

2.90E+03

2.92E+04

0.00E+00

2.92E+04

2.13E+03

2.12E+04

0.00E+00

2.12E+04

1.65E+03

1.63E+04

0.00E+00

1.63E+04

1.30E+03

1.31E+04

0.00E-+00

1.31E+04
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1.15E+03

1.18E+04

0.00E+00

1.18E+04

Total operating cost = $536386.
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Table (6.5) Power sharing (MW) of Example 3 (for units 1-13).

147

2

1

2

3

4

5

Unit Number

6 7

9

10 11

12 13

240

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

0.00

45.85

15.20

15.20

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

0.00

0.00

41.05

15.20

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

0.00

0.00

30.00

15.20

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

0.00

0.00

15.20

15.20

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

0.00

0.00

60.00

15.20

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

68.00

15.20

2.40

2.40

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

76.00

76.00

76.00

76.00

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

2.40

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

240

2.40

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 { 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00

0.00

0.00

76.00

76.00

76.00

64.10

NN
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0.00

0.00

0.00

0.00

0.00

0.00 ] 0.00

0.00

0.00

15.20

15.20

15.20

15.20




Table (6.6) Power sharing (MW) of Example 3 (for units 14-26).
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Z

14

15

16

17

18

Unit Number

19

20

21

22

23

24

25 26

0.00

0.00

0.00

155.0

155.0

155.0

155.0

68.95

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

68.95

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

344.8

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

71.20

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

100.0

100.0

155.0

155.0

155.0

155.0

152.2

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

124.2

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

124.2

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

149.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

119.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

99.00

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

157.0

68.95

0.00

350.0

350.0

350.0

100.0

100.0

38.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

100.0

100.0

78.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

149.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

129.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

RISBININIB|cIxISalalzIzisEIsoleolwa|u|s v~

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

331.3

350.0

350.0




Table (6.7) Load demand and hourly costs ($) of Example 3

HR

LOAD

ED-COST

ST-COST

T-COST

1.82E+03

1.87E+04

0.00E+00

1.87E+04

1.80E+03

1.84E+04

0.00E+00

1.84E+04

1.72E+03

1.64E+04

0.00E+00

1.64E+04

1.70E+03

1.61E+04

0.00E+00

1.61E+04

1.75E+03

1.68E+04

0.00E+00

1.68E+04

1.91E+03

1.91E+04

1.60E+02

1.93E+04

2.05E+03

2.15E+04

1.00E+02

2.16E+04

2.40E+03

2.97E+04

7.00E+02

3.04E+04

2.60E+03

3.40E+04

1.00E+02

3.41E+04

2.60E+03

3.40E+04

0.00E+00

3.40E+04

2.62E+03

3.44E+04

0.00E+00

3.44E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.59E+03

3.37E+04

0.00E+00

3.37E+04

2.57E+03

3.33E+04

0.00E+00

3.33E+04

2.50E+03

3.17E+04

0.00E+00

3.17E+04

2.35E+03

2.85E+04

0.00E+00

2.85E+04

2.39E+03

2.92E+04

0.00E+00

2.92E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.62E+03

3.44E+04

0.00E+00

3.44E+04

2.60E+03

3.40E+04

0.00E+00

3.40E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.15E+03

2.47E+04

0.00E+00

247E+04

NN o e el e =] S R BN Y IR N

1.90E+03

2.14E+04

0.00E+00

2.14E+04

Total operating cost = $660596.75
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6.3 HYBRID OF GENETIC ALGORITHMS AND TABU SEARCH

6.3.1 THE PROPOSED GT ALGORITHM

In this section we propose a new algorithm (GT) based on integrating the use of GA
and TS methods to solve the UCP. The proposed algorithm is mainly based on the GA
approach. TS is incorporated in the reproduction phase of the GA to generate a number of
new solutions (chromosomes). These new solutions are generated as neighbors to
randomly selected solutions (chromosomes) in the current population and are added to the
new population of the GA. The idea behind using TS is to ensure generating new
solutions and hence to prevent the search from being entrapped in a local minimum.

The major steps of the proposed GT algorithm are summarized as follows:

e Create an initial population by randomly generating a set of feasible solutions
(chromosomes) using rules described in Section 2.6.

e Evaluate the population and check the convergence.

e Generate new population from the current population by applying the GA
operators.

e Use TS to create new solutions (chromosomes) and add them to the new GA
population.

The details of the GT algorithm are also shown in the flow chart of Fig.(6.2).
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Read the data and initialize the variables of GA and TS

V_

Generate randomly the initial population of the GA , and
let it be the current population

Calculate the objective function for the current population
— members, by solving the EDP.

A

Caiculate and scale the fitness functions for the current
population members.

Yes

Is
the convergence
criteria
satisfied?

NO

Copy the best members(KB) in the current population to
the new population

V_

Use the TS algorithm to generate new members (KN) in
the new population, as neighbors to randomly selected
members in the current population

W

Apply the crossover operation to the current population to
complete the new population members

v

Apply the mutation operation to the members of the new
population

Y

Let the current population be the new population

Fig.(6.2) Flow Chart of the proposed GT Algorithm
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The following two sections summarize the implementations of different

components of the proposed GT algorithm.

6.3.2 GENETIC ALGORITHM PART OF THE GT ALGORITHM

GA is the basic part of the proposed GT algorithm. GA implementation is similar to
that described in Section 5.3. The implementation of the GA can be summarized as
follows:

e Creating an initial population by randomly generating a set of feasible
solutions (chromosomes) using rules described in Section 2.6.

e Solution is coded as a mix between binary and decimal number (see Section
5.3.2).

e Fitness function is constructed from the objective function only without penalty
terms (see Section 5.3.3).

e Reproduction operators of the GA, crossover and mutation described in

Sections 5.3.5 and 5.3.6 are used.

6.3.3 TABU SEARCH PART OF THE GT ALGORITHM

In the implementation of the GT algorithm, the TS is incorporated in the
reproduction phase of the GA as a tool for escaping the local minimum and the premature
convergence of the GA. TS is used to generate a prespecified number of new solutions
that have not been generated before (typically 5-10% of the population size). The tabu list
in the initial population is initially empty. It is then updated to accept or reject the new

solutions in each generation of the GA. The TS is implemented as a short term memory



153

algorithm. The flow chart of Fig. (6.3) shows the main steps of the TS algorithm

implementation that have been used as a part of the proposed GT algorithm.

Select randomly a solution(chromosome) in the
current population.

Decode the selected solution (chromosome) from
the decimal form into its binary form.

Generate randomly a set of neighbor solutions to the
selected solution(chromosome).

v

Calculate the objective function of each neighbor in the set

Sort the set of neighbors in an ascending order according
to their operating cost. Perform the following test on the set
of neighbors one by one until one of them is accepted

Is the
selected neighbor
TABU ?

Yes

Is AV
satisfied?

Accept this solution. Code it from binary into the equivalent
decimal form and add it to the new population of the GA.

No

required number of
solutions reached ?

Go to the next step of the main algorithm

Fig. (6.3) Tabu Search Part of the GT Algorithm
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6.3.4 NUMERICAL RESULTS OF THE GT ALGORITHM

In order to test the proposed GT algorithm, the same three examples are considered.

A number of tests on the performance of the proposed algorithm, have been carried
out to determine the most suitable GA and TS parameters settings. The following control
parameters have been chosen after running a number of simulations: population size=50,
crossover rate=0.8, mutation rate=0.3, best solutions copies=2, and the maximum number
of generations=1000, tabu list size=7.

Different experiments with different random number seeds were carried out to
investigate the performance of the proposed algorithm. It was found that the proposed
algorithm performs better than the TS algorithm and the simple GA, in terms of both
solution quality and number of iterations. Fig.(6.4) shows the convergence process of the
proposed algorithm when applied to solve Example 1.

Table (6.8) shows the comparison with the results of the TS and the GA for the
three examples. It is obvious that a substantial reduction in the objective function,
compared to the simple GA, has been achieved, while the GT algorithm converges
slower. This improvement in the objective function is due to the role of the TS in
generating new and good members in each new population of the GA.

Table (6.9) presents the comparison with the results obtained in the literature (LR
and IP) for Examples 1 and 2. In addition to the high percentage saving in the cost over
these classical methods, the proposed algorithm has so many other advantages. For

instance, it may produce various solutions with the same objective function. This gives
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the operator the flexibility to select any of them. Also, any additional operating
constraints could be easily handled without reformulating the problem.

Tables (6.10), (6.11) and (6.12) show the detailed results for Example 1 [29]. Table
(6.10) shows the load sharing among the committed units in 24 hours. Table (6.11)
presents the final schedule of the 24 hours, given in Table (6.10), in the form of its
equivalent decimal numbers. Table (6.12) gives the hourly load demand and the
corresponding economic dispatch costs, start-up costs, and total operating cost of the
final schedule

Tables (6.13), (6.14) and (6.15) show the detailed results for Example 3 [62]

6.0E+5 =
. 5.8E+5 —
@
5.6E+5 —
5.4E+5 —L
I
|
5.2E+5 - i T i . | ; T ;
0 100 200 300 400 500

Generation Number

Fig.(6.4) Convergence of the proposed GT Algorithm (Example 1)



Table (6.8) Comparison between the STSA, the GA and the GT algorithm,

Example| STSA GA GT

Total Cost (§) 1 538390 | 537372 | 535234

v 2 59512 59491 59380

v 3 662583 | 661439 | 660412
Generations/Iterations No. 1 1924 411 434
’ 2 616 393 513
” 3 3900 985 623

Table (6.9) Comparison between LR, IP and the GT algorithm

Example] LR [29] | IP [41] | _GT
Total Cost (3) T__ | 540895 - 535234
N 2 » 60667 | 59380

% Saving 1 0 R 1.05

N 2 - 0 2.12
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Table (6.10) Power sharing (MW) of Example 1

Z

2

3 4

Unit Number

6

7 8

9 10

400.0

0.0 | 0.0

185.0

0.0 13503

0.0 | 89.7

3954

0.0 | 0.0

181.1

0.0 |3384

0.0 | 85.2

3554

0.0 | 0.0

168.7

0.0 |301.0

0.0 | 750

333.1

00 | 00

161.8

0.0 |280.1

0.0 | 75.0

400.0

00 | 0.0

185.0

0.0 13503

0.0 | 89.7

400.0

0.0 1295.7

200.0

0.0 |375.0

0.0 [129.3

400.0

383.6 | 420.0

200.0

0.0 1375.0

0.0 1914

400.0

295.6 | 396.7

200.0

0.0 |375.0

560.0] 162.8

400.0

468.1 | 420.0

200.0

0.0 ]375.0

768.0 | 218.9

400.0

444.6 | 420.0

200.0

358.11375.0

741.11211.3

400.0

486.3 ] 420.0

200.0

404.9 | 375.0

789.0 | 224.9

400.0

514.1]420.0

200.0

436.1]375.0

820.9 | 233.9

400.0

479.4 | 420.0

200.0

397.11375.0

781.0]222.6

400.0

389.0[420.0

200.0

295.6 | 375.0

677.21193.2

400.0

310.1]410.8

200.0

250.0 1 375.0

586.6 | 167.5

400.0

266.6 | 368.3

200.0

250.0 | 375.0

536.7|153.4

400.0

317.3]1417.9

200.0

250.0 [ 375.0

594.9 | 169.9

400.0

458.5 | 420.0

200.0

373.71375.0

757.01215.8

400.0

486.3 [ 420.0

200.0

404.9 | 375.0

789.0 | 224.9

400.0

0.0 _|420.0

200.0

442.2 | 375.0

827.2 | 235.7

400.0

0.0 1404.9

200.0

0.0 375.0

579.6 ] 165.6

400.0

0.0 216.5

196.7

0.0 [375.0

358.81103.0
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0.0

0.0 1235.2

200.0

0.0 1375.0

380.6 | 109.2

24

0.0

0.0 1186.4

188.0

0.0 | 359.1

323.5] 93.0

**Units 1,5 are OFF all hours.

Table (6.11) GA population of the best solution for Example 1

Unit Number
1,6 2,7 3,8 4,9 5,10
0 4194303 | 524224 (16777184 0
16777215 1048064 | 16777215{16777088 | 16777215
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Table (6.12) Load demand and hourly costs (§) of Example 1

HR | LOAD |ED-COST|ST-COST| T-COST
1 1025 9670.04 0.00 9670.04
2 1000 | 9446.62 0.00 9446.62
3 900 8560.91 0.00 8560.91
4 850 8123.13 0.00 8123.13
5 1025 9670.04 0.00 9670.04
6 1400 | 13434.10 | 1055.97 | 14490.00
7 1970 | 19385.10 | 1631.43 | 21016.50
8 2400 | 23815.50 | 1817.70 | 25633.20
9 2850 | 28253.90 0.00 28253.90
10 | 3150 ] 31701.70 § 2057.58 | 33759.30
11 | 3300 | 33219.80 0.00 33219.80
12 | 3400 | 34242.00 0.00 34242.00
13 | 3275 | 32965.50 0.00 32965.50
14 | 2950 | 29706.30 0.00 29706.30
15 | 2700 | 27259.70 0.00 27259.70
16 | 2550 ] 25819.80 0.00 25819.80
17 | 2725 | 27501.60 0.00 27501.60
18 | 3200 | 32205.70 0.00 32205.70
19 | 3300 | 33219.80 0.00 33219.80

20 | 2900 | 28899.00 0.00 28899.00
21 | 2125 | 20698.40 0.00 20698.40
22 | 1650 | 16251.80 0.00 16251.80
23 1300 | 12989.60 0.00 12989.60
24 | 1150 ] 11631.00 0.00 11631.00

Total operating Cost = $535234
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Table (6.13) Power sharing (MW) of Example 3 (for units 1-13).
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Z

1

2

3

4

5

Unit Number

6

9

10 11

12

13

0.00

2.40

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

76.00

52.40

15.20

2.40

2.40

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

76.00

45.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

28.40

15.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

15.20

15.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

58.40

15.20

2.40

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

66.40

15.20

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

4.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

64.10
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0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

15.20

15.20

15.20

15.20




Table (6.14) Power sharing (MW) of Example 3 (for units 14-26).
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2

14

15

16

17

18

Unit Number

19

20

21 22

23

24 25

26

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

343.2

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

72.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

Q| | | Wi ] W I —

0.00

100.0

100.0

155.0

155.0

155.0

155.0

153.0

68.95

0.00

350.0

350.0

350.0

O

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

125.0

0.00

350.0

350.0

350.0

Y—
(=

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

125.0

0.00

350.0

350.0

350.0

—
—t

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

145.0

0.00

350.0

350.0

350.0

—
N

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

—
(¥8)

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

119.0

0.00

350.0

350.0

350.0

b
~

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

99.00

0.00

350.0

350.0

350.0

—
W

100.0

100.0

100.0

155.0

155.0

155.0

155.0

157.0

68.95

0.00

350.0

350.0

350.0

Y
(o)}

100.0

100.0

38.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

p—t
~J

100.0

100.0

78.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

Y
o0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

—
(=]

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

[\
()

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

149.0

0.00

350.0

350.0

350.0

N
—

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

129.0

0.00

350.0

350.0

350.0

[\®]
N

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

N
W

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

[N
F-S

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

331.3

350.0

350.0




Table (6.15) Load demand and hourly costs ($) of Example 3.

LOAD

ED-COST

ST-COST

T-COST

1.82E+03

1.80E+04

0.00E+00

1.80E+04

1.80E+03

1.77E+04

0.00E+00

1.77E+04

1.72E+03

1.66E+04

0.00E+00

1.66E+04

1.70E+03

1.63E+04

0.00E+00

1.63E+04

1.75E+03

1.70E+04

0.00E+00

1.70E+04

1.91E+03

1.93E+04

1.60E+02

1.94E+04

2.05E+03

2.16E+04

1.00E+02

2.17E+04

2.40E+03

2.98E+04

7.00E+02

3.05E+04

2.60E+03

3.41E+04

1.00E+02

3.42E+04

2.60E+03

3.41E+04

0.00E+00

3.41E+04

2.62E+03

3.46E+04

0.00E+00

3.46E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.59E+03

3.37E+04

0.00E+00

3.37E+04

2.57E+03

3.33E+04

0.00E+00

3.33E+04

2.50E+03

3.17E+04

0.00E+00

3.17E+04

2.35E+03

2.85E+04

0.00E+00

2.85E+04

2.39E+03

2.92E+04

0.00E+00

2.92E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.62E+03

3.44E+04

0.00E+00

3.44E+04

2.60E+03

3.40E+04

0.00E+00

3.40E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

2.15E+03

2.47E+04

0.00E+00

247E+04

ﬁBBBBG;S;G;;S:Som\lO\MAumﬁ%

1.90E+03

2.14E+04

0.00E+00

2.14E+04

Total operating cost = $660412.4375
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6.4 HYBRID OF GENETIC ALGORITHMS , SIMULATED ANNEALING

AND TABU SEARCH

6.4.1 THE PROPOSED GST ALGORITHM

This section presents a new algorithm (GST) based on integrating the GA, the TS
and the SA methods to solve the UCP. The proposed GST algorithm could be considered
as a further improvement to the GT algorithm implemented in Section 6.3.

The core of the proposed algorithm is based on GA. The TS is used to generate new
population members in the reproduction phase of the GA. Moreover, the SA method is
adopted to improve the convergence of the GA by testing the population members of the
GA after each generation. The SA test allows the acceptance of any solution at the
beginning of the search, while only good solutions will have higher probability of
acceptance as the generation number increases. The effect of using the SA is to accelerate
the convergence of the GA and also increase the fine tuning capability of the GA when
approaching a local minimum.

The major steps of the algorithm are summarized as follows[92]:

e Create an initial population by randomly generating a set of feasible solutions
(Section 2.4), and initialize the current solution of the SA algorithm.

e Apply GA operators to generate new population members.

e Use the TS algorithm to generate some members in the new population
(typically 5-10% of the population size), as neighbors to the randomly selected

solutions in the current population.
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» Apply the SA algorithm to test all the members of the new population
Fig. (6.5) shows the flow chart of the proposed GTS algorithm.
The following sections summarize the implementations of different components of

the proposed GTS algorithm.

6.4.2 GENETIC ALGORITHM PART OF THE GST ALGORITHM

The implementations of the GA in the GST algorithm are exactly the same as that

described in 6.3.3.

6.4.3 TABU SEARCH PART OF THE GST ALGORITHM

The implementations of the TS part in the GST is also the same as that described in

Section 6.3.4.

6.4.4 SIMULATED ANNEALING PART OF THE GST ALGORITHM
After creating a new population of the GA, the SA test is applied to the members of
this population, one by one. The steps of the SA algorithm as applied at the kth
generation of the proposed GST algorithm are described as follows:
Let U,F. be the SA current solution and the corresponding operating cost
respectively.
Let U;,F; be the jth solution (chromosome) in a given population and the
corresponding operating cost respectively.
Step (1): Calculate the new temperature cp* = cp°(p)* , where 0 <p <1.
Step (2): At the same calculated temperature, Cpk , apply the following acceptance test

for the population members of the GA one by one.
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Initialize the GA, TS, and SA variables
GA: generation number=0, TS: TL=0, AV=0, SA:Cp=Cpo

Y

Generate randomly the initial population of the GA. Let the initial
population be the current population. Let the best solution in the
initial population be the current solution of the SA aigorithm

Calculate the objective function for the current population
- members, by solving the EDP.

Y

Calculate and scale the fitness functions for the current
population members.

Yes

Is
the convergence
criteria
satisfied?

No

Copy a specified number of the best members in the
current population to the new population

v

Use the TS algorithm to generate new members (KN) in
the new population, as neighbors to randomly selected
members in the current population

v

Apply the crossover operation to the current population to
compliete the new population members

Y

Apply the mutation operation to the members of the new
population

Calculate the new temperature of the SA algorithm
cooling schedule. Apply the SA testto acceptor reject
the members of the new population (one by one) according
to the SA current solution. Update the new population
members and the SA current solution.

A

Let the current population be the new population

Fig.(6.5) Flow Chart of the proposed GST Algorithm for the UCP
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Step (3): Acceptance test: If F; <F,or exp((F. - F;)/ Cp] 2 U(0,1), then accept the
population member, and update the current solution; set Uc =Uj and F, = F j
then go to Step (4). Otherwise, reject the population member and set Uj = Uc
and F; = F; then go to Step (4).

Step (4):If all the population members are tested go to the next step in the main

algorithm, otherwise go to Step (2).

6.4.5 NUMERICAL RESULTS OF THE GST ALGORITHM

For the purpose of testing the proposed hybrid GST algorithm, the same three
examples, from the literature [29,41,62], are considered.

The following control parameters have been chosen after running a number of
simulations: population size=50, crossover rate=0.8, mutation rate=0.3, elite copies=2,
and the maximum number of generations=1000, tabu size=7, initial control parameter
(temperature)=5000, g =0.9.

Fig.(6.6) shows the convergence speed of the GST algorithm, when Example 1 is
solved.

Different experiments were carried out to evaluate the results obtained by the
proposed GST algorithm and those obtained from the individual algorithms in [Chapters
3,4 and 5]. Table (6.16) shows the results of this comparison for the three examples. The
superiority of the GST algorithm is obvious. It is clear that the GTS algorithm performs
better than each of the individual algorithms, in terms of both solution quality and

number of generations.
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Table (6.17) presents the comparison of results obtained in the literature (LR and
IP) for Examples 1 and 2, and the proposed GST algorithm.

Tables (6.18), (6.19) and (6.20) show detailed results for Example 1 [29]. Table
(6.18) shows the load sharing among the committed units in the 24 hours. Table (6.18)
presents the final schedule of the 24 hour period, given in Table (6.19), in the form of its
equivalent decimal numbers. Table (6.20) gives the hourly load demand and the
corresponding economic dispatch costs, start-up costs, and total operating cost.

Tables (6.21), (6.22) and (6.23) show detailed results for Example 3, [62].
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Fig.(6.6) Convergence of the proposed GST Algorithm (Example 1)
(6.16) Comparison between SAA, STSA, GA and the GST algorithm
Example SA STSA GA GST
Total Cost ($) 1 536622 | 538390 [ 537372 | 535271
’s 2 59385 59512 59491 59380
”s 3 662664 | 662583 | 661439 | 660151
Generations/Iterations No. 1 384 1924 411 181
’s 2 652 616 393 180
’s 3 2361 3900 985 762




Table (6.17) Comparison between LR and IP and the GST algorithm

Example LR IP GST
Total Cost ($) 1 540895 - 535271
v 2 - 60667 59380

% Saving 1 0 - 1.04

’ 2 - 0 2.12

Table (6.18) Power sharing (MW) of Example 1

HR Unit Number
2 3 4 6 7 8 9 10

1 | 400 0 0 185.0] 0 [350.2] O 89.7
2 [395.3 0 0 |181.0} O {3383] O |[85.19
3 |355.3 0 0 [1686] O 3009 O 75
4 [333.1 0 0 J161.7] 0 [280.1 0 75
5 | 400 0 0 |185.0] 0 [350.2]| O 89.7
6 | 400 0 [295.6 [ 200 0 375 0 [129.3
7 | 400 [383.5 | 420 | 200 0 375 0 [|191.4
8 | 400 [295.5 1396.6 | 200 0 375 [569.9 [162.8
9 | 400 1468.0 | 420 | 200 0 375 1768.0 |218.9
10 | 400 |444.6] 420 | 200 |358.0 | 375 [741.0 |211.2
11 | 400 |486.3] 420 | 200 |404.8 | 375 [788.9 [224.8
12 | 400 |514.1 | 420 | 200 {436.0 | 375 [820.8 [233.9
13 | 400 1479.3 | 420 | 200 [397.0 | 375 [780.9 |222.6
14 | 400 |388.9 | 420 | 200 {295.6 | 375 [677.1 |193.2
15 { 400 |310.0 |410.8 | 200 | 250 | 375 [586.5 [167.5
16 | 400 |266.6 [368.2 | 200 | 250 | 375 [536.6 [153.4
17 | 400 |317.3 1417.9 | 200 | 250 | 375 [594.8 |169.8
18 | 400 |458.5 | 420 | 200 |373.6 | 375 [757.0 |215.8
19 | 400 |486.3] 420 | 200 [404.8 | 375 [{788.9 [224.8
20 | 400 [491.8( O 200 |411.1§ 375 |795.3 |226.6
21 | 400 {3447 ] O 200 0 375 1626.4 [178.8
22 | 400 [459.0! 0 200 0 375 0 J2159
23 | 400 [1949 | O 200 0 375 0 {130.0
24 1389.5 | 165 0 [179.3] 0 [3329] O |83.15

**Units 1,5 are OFF all hours.
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Table (6.19) The best population in the GA for Example 1

Unit Number
1,6 2,7 3.8 49 5,10
0 16777215 116777152 16777184 0
4194303 | 1048064 | 16777215] 2097024 | 16777215

Table (6.20) Load demand and hourly costs ($) of Example 1

HR | LOAD |ED-COST|] ST-COST| T-COST
1 1.025 | 9.670.0 - 9.670.0
2 1,000 | 9.,446.6 - 9,446.6
3 900 8,560.9 - 8,560.9
4 850 8,123.1 - 8,123.1
b} 1,025 | 9.670.0 - 9,670.0
6 1,400 | 13.434.1 | 1,056.0 | 14,490.0
7 1,970 | 19,385.1 | 1,631.4 | 21,016.5
8 2400 | 23.815.5 | 1,817.7 | 25,633.2
9 2,850 | 28,253.9 - 28.253.9
10 | 3,150 | 31,701.7 | 2,057.6 | 33,759.3
11 | 3,300 | 33,219.8 - 33,219.8
12 | 3,400 | 34,242.1 - 34,242.1
13 | 3,275 | 32,965.5 - 32,965.5
14 | 2,950 | 29,706.3 - 29,706.3
15 ] 2,700 | 27,259.7 - 27,259.7
16 | 2,550 | 25,819.8 - 25,819.8
17 | 2,725 | 27,501.6 - 27,501.6
18 | 3,200 | 32,205.7 - 32,205.7
19 | 3,300 | 33,219.8 - 33,219.8

20 ] 2,900 | 29.198.0 - 29,198.0
21 | 2,125 | 20,994.5 - 20,994.5
22 | 1,650 | 16,158.6 - 16,158.6
23 | 1,300 | 12,758.9 - 12,758.9
24 | 1,150 | 11,397.1 - 11,397.1

Total operating Cost = $535270.94
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Table (6.21) Power sharing (MW) of Example 3 (for units 1-13).
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1

2

3

4

5

Unit Number

6

7

9

10 11

12 13

2.40

2.40

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

76.00

50.00

15.20

2.40

2.40

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

0.00

76.00

45.20

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

0.00

28.40

15.20

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

0.00

15.20

15.20

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

0.00

0.00

0.00

58.40

15.20

0.00

2.40

0.00

0.00

0.00

4.00

0.00

0.00

0.00

76.00

76.00

66.40

15.20

0.00

2.40

2.40

0.00

0.00

4.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

2.40

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

2.40

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

2.40

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

240

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

2.40

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

76.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

76.00

76.00

76.00

64.10

I o] 1] Pt ] v e P I o ] o 1y (= Y B (Y (Y NS 1) Oy

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

15.20

15.20

15.20

15.20




Table (6.22) Power sharing (MW) of Example 3 (for units 14-26).
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5

14

15

16

17

18

Unit Number
21 22 23

19

20

24

25

26

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

343.2

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

0.00

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

0.00

67.20

155.0

155.0

155.0

155.0

0.00

0.00

0.00

350.0

350.0

350.0

0.00

100.0

100.0

155.0

155.0

155.0

155.0

152.2

68.95

0.00

350.0

350.0

350.0

Nollo-1LN ] 1o N (FIE N F] 5] N

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

124.2

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

124.2

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

146.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

106.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

116.6

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

96.60

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

157.0

68.95

0.00

350.0

350.0

350.0

100.0

100.0

38.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

100.0

100.0

78.10

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

109.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

149.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

197.0

129.0

0.00

350.0

350.0

350.0

100.0

100.0

100.0

155.0

155.0

155.0

155.0

137.0

68.95

0.00

350.0

350.0

350.0

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

350.0

350.0

350.0

0.00

25.00

25.00

155.0

155.0

155.0

155.0

68.95

68.95

0.00

331.3

350.0

350.0




Table (6.23) Load demand and hourly costs ($) of Example 3

LOAD

ED-COST

ST-COST

T-COST

1.82E+03

1.80E+04

0.00E+00

1.80E+04

1.80E+03

1.77E+04

0.00E+00

1.77E+04

1.72E+03

1.66E+04

0.00E+00

1.66E+04

1.70E+03

1.63E+04

0.00E+00

1.63E+04

1.75E+03

1.70E-+04

0.00E+00

1.70E+04

1.91E+03

1.93E+04

1.60E+02

1.94E+04

2.05E+03

2.17E+04

1.00E+02

2.18E+04

2.40E+03

2.97E+04

7.00E+02

3.04E+04

2.60E+03

3.40E+04

1.00E+02

3.41E+04

2.60E+03

3.40E+04

0.00E+00

3.40E+04

2.62E+03

3.45E+04

0.00E+00

3.45E+04

2.58E+03

3.35E+04

0.00E+00

3.35E+04

2.59E+03

3.38E+04

0.00E+00

3.38E+04

2.57TE+03

3.33E+04

0.00E+00

3.33E+04

2.50E+03

3.17E+04

0.00E+00

3.17E+04

2.35E+03

2.85E+04

0.00E+00

2.85E+04

2.39E+03

2.92E+04

0.00E+00

2.92E+04

2.48E+03

3.12E+04

0.00E+00

3.12E+04

S;SR;EC‘,G:S\OOO\!O\MAMN_%

2.58E+03

3.35E+04

0.00E+00

3.35E+04

[y}
(=)

2.62E+03

3.44E+04

0.00E+00

3.44E+04

N
Prand

2.60E+03

3.40E+04

0.00E+00

3.40E+04

N
N

2.48E+03

3.12E+04

0.00E+00

3.12E+04

N
w

2.15E+03

2.4TE+04

0.00E+00

2.4TE+04

N
5

1.90E+03

2.14E+04

0.00E+00

2.14E+04

Total operating cost = $660151.25
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6.5 SUMMARY

In this chapter, three Al-based novel hybrid algorithms for the UCP are proposed.
The hybrid algorithms integrate the use of the previously introduced algorithms: SA, TS,
and GA. The ideas of the hybridization of these algorithms are original and are applied to
the UCP for the first time. Various details of implementation have also been discussed.

In the first algorithm[93], the main features of the SA and the TS methods are
integrated. The TS test is embedded in the SA algorithm to create a memory which
prevents cycling of the solutions accepted by the SA. A significant cost saving has been
achieved over the individual of both the TS and the SA methods.

The second hybrid algorithm is based on integrating the use of GA and TS methods
to solve the UCP. The proposed algorithm is mainly based on the GA approach. The TS
is used to induce new population members in the reproduction phase of the GA.

A third new hybrid algorithm which integrates the main features of the three
algorithms: GA, TS, and SA is also proposed. The algorithm is mainly structured around
the GA, while the TS is used to generate new members in the GA population. The SA
algorithm is used to test all the GA members after each reproduction of a new population.

Among the three hybrid algorithms, it is found that, the overall performance of the
GT algorithm is superior. The GT algorithm converges faster and gives a better quality
of solutions.

In the next chapter, a comparison between the seven proposed algorithms and the

other methods reported in the literature is detailed.
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CHAPTER SEVEN

COMPARISONS OF THE PROPOSED

ALGORITHMS FOR THE UNIT COMMITMENT

PROBLEM

In the last four chapters, seven Al-based algorithms were proposed for solving the
UCP.
The two proposed algorithms, presented in chapters 3 and 5, are considered new
implementations of these techniques. These algorithms are
¢A Simulated Annealing Algorithm (SAA), and
oA Genetic Algorithm (GA).
The other five proposed algorithms, presented in chapters 4 and 6, are original and
are applied for the first time to solve the UCP. These algorithms are
oA Simple Tabu Search Algorithm (STSA),
eAn Advanced Tabu Search Algorithm (ATSA),
oA hybrid of the Simulated annealing and Tabu search algorithms (ST),
oA hybrid of Genetic and Tabu search algorithms (GT), and

o A hybrid of Genetic, Simulated annealing, and Tabu search algorithms (GST).
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This chapter is intended for the comparison between the results obtained using
these algorithms and those obtained using other methods (LR, and IP) available in the

literature [29,41,62].

7.1 RESULTS OF EXAMPLE 1

Table (7.1) and Figs.(7.1) and (7.2) show the daily operating costs and the number
of iterations (or generations for the GA based algorithms), of the seven proposed
algorithms and the LR and the SAA-67 methods as well, for Example 1.

Generally speaking, all the proposed algorithms outperform the results reported in
the literature using the LR and the SAA-67 methods for the same example. The daily cost
saving amount range between 2505 (using STSA) and 5661 (using GT) which is
equivalent to a percentage saving of 0.46 to 1.05 respectively.

Comparing the results of the proposed algorithms, for Example 1, it is clear that the
GT algorithm is the best as far as quality of solution and convergence speed are
concerned.

Considering the algorithms based on a single technique, e.g., SA, STSA, ATSA,
and GA, we conclude that the SA performance is the best among these algorithms as far
as the objective function value and the number of iterations required for convergence are
concerned.

It can also be concluded that the results of the hybrid algorithms, e.g. ST, GT, and

GST are better than the results of the algorithms based on a single method.
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Among the proposed hybrid algorithms, it is also found that the GT algorithm

provides a better quality of solution and also a faster speed of convergence.

Table (7.1) Comparison of different algorithms for Example 1

Algorithm | Daily Operating |Amount of Daily] % saving |No. of Iterations
Cost (3) Saving or Generations
LR [29] 540895 0. 0 -
SAA [67] 538803 2092 0.38 821
SAA 536622 4273 0.79 384
STSA 538390 2505 0.46 1924
ATSA 537686 3209 0.59 1235
GA 537372 3523 0.65 411
ST 536386 4509 0.83 625
GT 535234 5661 1.05 434
GST 535271 5624 1.04 181




Dally opertaing Cost ($)

541000

538000 %
537000 {ic

534000
The proposed algorithms

Fig.(7.1) Operating costs of different proposed algorithms for Example 1
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Fig.(7.2) Operating costs of different proposed algorithms for Example 2
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7.2 RESULTS OF EXAMPLE 2

Table (7.2) and Figs.(7.3) and (7.4) show the daily operating costs and the number
of iterations (or generations of the GA based algorithms), of the seven proposed
algorithms and the IP and SAA-67 methods as well, for Example 2.

As shown, the results of our proposed algorithms are better than the results reported
in the literature using the [P method for this example. Compared with the IP results, the
daily cost saving amount ranges between 1155 (by SA and STSA) and 1287 (by GT and
GST) which is equivalent to a percentage saving of 1.9 to 2.12 respectively.

Among the results of all the proposed algorithms, for Example 2, it is clear that the
GT and GST algorithms are the best.

Considering the algorithms based on a single method , e.g. SA, STSA, ATSA, and
GA, although there is not much difference between them, the ATSA gives slightly better
results than the others as far as the objective function value and the number of iterations
required for convergence are concerned.

It can also be concluded that the results of the hybrid algorithms, e.g. ST, GT, and
GST are better than the results of the algorithms based on a single method.

Among the proposed hybrid algorithms, it is also found that the GST algorithm is

the best in terms of the quality of solution and the speed of convergence.



Table (7.2) Comparison of different algorithms for Example 2
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Algorithm | Daily Operating |Amount of Daily| % saving | No. of Iterations
Cost (3) Saving or Generations
IP [41] 60667 0 0 -

SAA [67] 59512 1155 1.9 945
SAA 59512 1155 1.9 652
STSA 59512 1155 1.9 616
ATSA 59385 1282 2.1 138
GA 59491 1176 1.93 393
ST 59385 1282 2.11 538
GT 59380 1287 2.12 513
GST 59380 1287 2.12 180

Dally opertaing Cost ($)

The proposed algorithms

Fig.(7.3) Operating costs of different proposed algorithms for Example 2
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Number of iterations
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Fig.(7.4) Number of iterations of different proposed algorithms for Example 2



181

7.3 RESULTS OF EXAMPLE 3

Table (7.3) and Figs.(7.5) and (7.6) present the daily operating costs and the
number of iterations (or generations of the GA based algorithms), of the seven proposed
algorithms and of the SAA-67 method, for Example 3.

In this example, the proposed algorithms also give better results than those of the
SAA-67. The daily cost saving amount, referred to the SAA-67 results, ranges between
1169 (by SA) and 3682 (by GST) which is equivalent to a percentage saving of 0.17 and
0.55 respectively.

Among all the proposed algorithms, for Example 3, it is obvious that the GST
algorithm provides the best quality of solution, while the GT algorithm converges faster.

Considering the algorithms based on a single method, e.g. SA, STSA, ATSA, and
GA, based on the results of this example, it is noted that the ATSA performance is the
best among these algorithms as far as the objective function value is concerned, while the
GA converges faster.

It can also be concluded that the results of the hybrid algorithms, e.g. ST, GT, and
GST are better than the results of the algorithms based on a single method.

As far as the proposed hybrid algorithms are concerned, it is also found that the

GST algorithm is the best in the quality of solution and the GT convergence is better.
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Table (7.3) Comparison of different algorithms for Example 3

659000 L

Algorithm | Daily Operating [Amount of Daily| % Saving No. of [terations
Cost ($) Saving or Generations
SAA [67] 663833 0 0 2864
SAA 662664 1169 0.17 2361
STSA 662583 1250 0.19 3900
ATSA 660864 2969 0.45 2547
GA 661439 2394 0.36 985
ST 660596 3237 0.48 2829
GT 660412 3421 0.51 623
GST 660151 3682 0.55 762
664000
663500 JS Rl - -
_ 663000 {TEEEEL oo
S 662500 T T
S 662000 frgeiigzalriile g
§ 661500 i O LSRG R
8 661000 {Z BT dlogeanal - Jdyeean L
2 660500 -
[=]

The proposed algorithms

Fig.(7.5) Operating costs of different proposed algorithms for Example 3
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7.4 SUMMARY

This chapter is intended for the comparison between the results of our proposed
algorithms and the results of other methods reported in the literature. Three systems
extracted from the literature are considered. The effectiveness of our proposed algorithms
is demonstrated.

It can be concluded that, all the proposed algorithms outperform the results reported
in the literature using the LR , the IP and the SA method.

Considering the algorithms based on a single technique, e.g., SAA, STSA, ATSA,
and GA, we conclude that the performance of both the SAA and the GA are the best.

It can also be concluded that the results of the hybrid algorithms, e.g. ST, GT, and
GST are superior to the results of the algorithms based on a single method.

Among the proposed hybrid algorithms, it is also found that the GST algorithm
provides a better quality of solution and also a faster speed of convergence.

In the following chapter the applicability of the proposed algorithms is examined

through the solution of the SCECO-East power system.
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CHAPTER EIGHT

APPLICATION TO THE SCECO EAST SYSTEM

8.1 OVERVIEW

In the course of testing and demonstrating the effectiveness of the proposed
algorithms, presented in the last four chapters for solving the UCP, we have applied two
of these algorithms to a real power system data. The selected sample of data is extracted
from the Saudi Consolidated Electric Company in the Eastern Province (SCECO-East).

The Saudi Consolidated Electric Company, which is a local electric utility in the
Eastern Province, (SCECO-East), is in charge of generating, transmitting and distributing
the electric power to the consumers in the Eastern Province of Saudi Arabia.

Based on the performance of the proposed algorithms discussed in the last chapters,
the SA (as one of the algorithms based on individual method) and the GT ( as
representative of the hybrids) algorithms have been selected to solve the UCP of this real
system.

Modified versions of the two algorithms [126], ST and GT, are implemented to suit
the selected real system data. These modifications are summarized as follows:

e One of the important constraints, in real power systems, is the unit derating due
to atmospheric temperature changes. To include such a practical constraint, a

routine is added to modify a unit capacity according to the given temperatures.
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e The system data related to the cost function of the generating units are available
in the form of heat rate curves, so we have used a curve fitting routine to
calculate the cost function parameters of the generating units, A, B and C given
in equation. 2.1. as a quadratic function.

® Due to the shortage of data needed to accurately calculate the start-up costs of

the generating units, they were not taken into consideration.

8.2 NUMERICAL RESULTS

The modified versions of the two proposed SA and GT algorithms are applied to a
sample of data extracted from the SCECO-East system. The sample of data includes 24
units with different capacities. A typical daily load curve from the winter season is
chosen and modified to suit the selected sample of units. The amount of spinning reserve
is taken as 400 MW in all hours. The derating constraints are also taken into account and
considered as a function of the weather temperature. The full data of the sample of
SCECO-East system is given in Appendix C.

In the Systems Operation Department of the SCECO-East company, a computer
program has been implemented to solve the UCP. The program is based on the Dynamic
Programming approach with some heuristic rules [17]. In this program, the generating
units are clustered into related groups so as to minimize the number of unit combinations
which must be tested without precluding the optimal path. The program also solves the

EDP using piecewise linear cost curves. The implemented DP computer program has
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been applied to the selected sample of data. The total operating cost of the resulted

schedule was found to be $1,375,865.

8.2.1 RESULTS OF THE SA ALGORITHM

For the SA algorithm[126], a number of tests on the performance of the algorithm
have been carried out on the SCECO-East Example to find the most suitable SA
parameters settings for the cooling schedule. Preliminary trials have been performed to
set the SA algorithm parameters. The following parameter settings have been chosen:
initial value of the control parametercp,=7000, §=0.3, chain length=150 and the
maximum number of chains=1000, and g=1e-6,.

Tables (8.1), (8.2) and (8.3) present the detailed results of the SA algorithm.
Table(8.1) and (8.2) show the load sharing in MW among the committed units in the 24
hours. Table (8.3) gives the hourly load demand and the corresponding economic
dispatch costs, start-up costs, and total operating cost. The start up costs are zero, since

there is no available data for calculation.

8.2.2 RESULTS OF THE GT ALGORITHM

Different runs were carried out for the GT algorithm to find the most suitable
parameters setting for the system. The following control parameters have been chosen:
population size=50, crossover rate=0.8, mutation rate=0.3, number of elite copies=2,
number of new solutions generated by tabu search=5, and the maximum number of

generations=500, and tabu list size=7.
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The detailed results of applying the GT algorithm for the SCECO-East Example are

shown in Tables (8.4),(8.5) and (8.6).

8.3 COMPARISON OF THE RESULTS

Table (8.7) and Fig.(8.1) show the comparison of results obtained by the Dynamic
Programming-based algorithm, implemented in SCECO-East, and our proposed SA and
GT algorithms.

Referring to the results presented in Section(8.2), a considerable improvement in
the daily operating cost was achieved using both SA and GT algorithms. The saving in
cost for the SA algorithm is 4.1% which amounts to approximately $56,474 daily. For the
GT algorithm the daily cost saving is $75,761 which is equivalent to 5.5%. These results
basically show the effectiveness of the proposed algorithms and their applicability to real

power systems.
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Table(8.1) Power sharing (MW) of the SA algorithm for the SCECO-East

Example(units 1-12)

2

1

2

3

4

Unit Number

6

7 8

9

10 11

12

525.9

525.9

316.8

316.5

316.5

316.5

0.00

0.00

0.00

50.79

48.76

0.00

519.1

519.1

312.3

312.3

312.3

312.3

0.00

0.00

0.00

50.79

48.76

0.00

525.8

525.8

316.7

316.5

316.5

316.5

0.00

0.00

0.00

0.00

0.00

0.00

512.6

512.6

308.1

308.2

308.2

308.2

0.00

0.00

0.00

0.00

0.00

0.00

513.2

513.2

308.5

308.7

308.7

308.7

0.00

0.00

0.00

0.00

0.00

0.00

473.5

473.5

282.6

283.8

283.8

283.8

0.00

0.00

0.00

0.00

0.00

0.00

495.5

495.5

297.0

297.6

297.6

297.6

0.00

0.00

0.00

0.00

0.00

0.00

507.0

507.0

304.5

304.8

304.8

304.8

0.00

0.00

0.00

0.00

48.76

0.00

523.3

523.3

315.1

315.0

315.0

315.0

0.00

0.00

0.00

0.00

48.76

0.00

523.2

523.2

315.0

314.9

314.9

314.9

0.00

0.00

0.00

50.79

48.76

0.00

530.3

530.3

319.7

319.3

319.3

319.3

0.00

0.00

0.00

50.79

48.76

0.00

517.1

517.1

311.0

311.0

311.0

311.0

0.00

0.00

0.00

50.79

48.76

0.00

519.2

519.2

312.4

312.4

312.4

312.4

0.00

0.00

0.00

50.79

48.76

0.00

528.1

528.1

318.2

317.9

317.9

317.9

0.00

0.00

0.00

50.79

48.76

0.00

530.3

530.3

319.6

319.3

319.3

319.3

0.00

0.00

0.00

50.79

48.76

0.00

521.2

521.2

313.7

313.6

313.6

313.6

0.00

0.00

0.00

50.79

48.76

0.00

507.9

507.9

305.1

305.4

305.4

305.4

0.00

0.00

0.00

30.79

48.76

0.00

526.9

526.9

3174

317.2

317.2

317.2

0.00

0.00

0.00

50.79

48.76

47.71

513.6

513.6

308.8

308.9

308.9

308.9

0.00

0.00

0.00

50.79

48.76

47.71

515.8

515.8

310.2

310.3

310.3

310.3

0.00

0.00

0.00

50.79

48.76

47.71

522.5

522.5

314.6

314.4

314.4

314.4

0.00

0.00

0.00

50.79

48.76

47.71

520.3

520.3

313.1

313.1

313.1

313.1

0.00

0.00

0.00

50.79

48.76

47.71

504.8

504.8

303.0

303.4

303.4

303.4

0.00

0.00

0.00

50.79

48.76

47.71

P (] ] i £ =] o P2 g o o 1 V=1 51 B PN 1 NS 11 N1 O

487.1

487.1

291.5

292.4

292.4

292.4

0.00

0.00

0.00

50.79

48.76

47.71
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Table(8.2) Power sharing (MW) of the SA algorithm for the SCECO-East
Example(units 13-24)

2

13

14

15

16

17

Unit Number
18 19 20 21 22 23 24

0.00

49.19

0.00

0.00

0.00

0.00 143.07! 0.00 | 0.00 |31.07| 0.00 |38.73

0.00

0.00

0.00

0.00

0.00

0.00 [43.07] 0.00 | 0.00 |31.07} 0.00 {38.73

0.00

0.00

0.00

0.00

0.00

0.00 143.07] 0.00 | 0.00 | 0.00 | 0.00 |38.73

0.00

0.00

0.00

0.00

0.00

0.00 143.07{ 0.00 { 0.00 | 0.00 | 0.00 [38.73

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00 | 0.00 | 0.00 | 0.00 { 0.00 |38.73

0.00

0.00

0.00

0.00

0.00

0.00 | 0.00 | 0.00 { 0.00 | 0.00 | 0.00 |38.73

0.00

0.00

50.24

0.00

0.00

0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |[38.73

49.15

0.00

50.24

0.00

0.00

0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |38.73

49.15

0.00

50.24

0.00

0.00

0.00 [43.07/43.03] 0.00 | 0.00 3é.73 0.00

49.15

0.00

50.24

0.00

0.00

0.00 143.07{43.03{ 0.00 | 0.00 |38.73| 0.00

49.15

49.19

0.00

0.00

0.00

0.00 ]143.07|43.03| 0.00 | 0.00 [38.73]38.73

49.15

49.19

0.00

0.00

0.00

0.00 143.07143.03| 0.00 | 0.00 |38.73]38.73

49.15

49.19

50.24

0.00

0.00

0.00 143.07(43.03{ 0.00 | 0.00 |38.73|38.73

49.15

49.19

50.24

0.00

0.00

0.00 143.07[43.03| 0.00 | 0.00 |38.73[38.73

49.15

49.19

50.24

0.00

0.00

0.00 }143.07/43.03] 0.00 | 0.00 | 38.73]38.73

49.15

49.19

50.24

0.00

0.00

0.00 [43.07{43.03{31.04] 0.00 [38.73]38.73

49.15

49.19

50.24

0.00

0.00

0.00 143.07]43.03|31.04| 0.00 |38.73]38.73

49.15

49.19

50.24

5541

0.00

0.00 {43.07143.03131.04]31.07{38.73[38.73

49.15

49.19

50.24

55.41

0.00

0.00 143.07]43.03{31.04|31.07|38.73|38.73

49.15

49.19

50.24

55.41

0.00

0.00 143.07]43.03{31.04|31.07/38.73|38.73

49.15

49.19

50.24

55.41

0.00

0.00 143.07(43.03§31.04)31.07|38.73/38.73

49.15

49.19

50.24

55.41

0.00

0.00 143.07]43.03/31.04}31.07/38.73| 38.73

49.15

49.19

50.24

5541

0.00

0.00 143.07{43.03/31.04|31.07|38.73]38.73

4 (1N 1 =1 = = i =) oI ] o P X3 51 SR ECY (VAT EN TOR (Y2

49.15

49.19

50.24

55.41

0.00

0.00 |43.07/43.03131.04]31.07[38.73{38.73
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Table (8.3) Load demand and hourly costs of the SA algorithm for the SCECO-East
Example

B

LOAD

ED-COST

ST-COST

T-COST

2.58E+03

5.38E+04

0.00E+00

5.38E+04

2.50E+03

5.19E+04

0.00E+00

5.19E+04

2.40E+03

4 94E+04

0.00E+00

4.94E+04

2.34E+03

4.81E+04

0.00E+00

4.81E+04

2.30E+03

4.71E+04

0.00E+00

4.71E+04

2.12E+03

4.33E+04

0.00E+00

4.33E+04

2.27E+03

4 .66E+04

0.00E+00

4.66E+04

2.42E+03

5.01E+04

0.00E+00

5.01E+04

2.58E+03

5.37E+04

0.00E+00

5.37E+04

2.63E+03

5.49E+04

0.00E+00

5.49E+04

2.70E+03

5.65E+04

0.00E+00

5.65E+04

2.64E+03

5.52E+04

0.00E+00

5.52E+04

2.70E+03

5.67E+04

0.00E+00

5.67E+04

2.74E+03

5.75E+04

0.00E+00

3.75E+04

2.75E+03

5.77E+04

0.00E+00

5.77E+04

2.74E+03

5.76E+04

0.00E+00

5.76E+04

2.68E+03

5.63E+04

0.00E+00

5.63E+04

2.90E+03

6.17E+04

0.00E+00

6.17E+04

2.84E+03

6.04E+04

0.00E+00

6.04E+04

2.85E+03

6.07E+04

0.00E+00

6.07E+04

2.88E+03

6.13E+04

0.00E+00

6.13E+04

2.87E+03

6.11E+04

0.00E+00

6.11E+04

2.80E+03

5.96E+04

0.00E+00

5.96E+04

ﬁﬁBBBG;SEGIC‘,G:g\omQO\MAuNM

2.72E+03

5.79E+04

0.00E+00

5.79E+04

Daily operating cost = $1,319,391



Table(8.4) Power sharing (MW) of the GT algorithm for the SCECO-East
Example(units 1-12)

192

B

1

2

3

4

5

Unit Number

6

7 8

9

10

11

12

527.5

527.5

317.8

317.5

317.5

317.5

0.00

0.00

0.00

0.00

0.00

0.00

523.2

523.2

315.0

314.9

314.9

314.9

0.00

0.00

0.00

0.00

0.00

0.00

514.6

514.6

309.4

309.5

309.5

309.5

0.00

0.00

0.00

0.00

0.00

0.00

513.2

513.2

308.5

308.7

308.7

308.7

0.00

0.00

0.00

0.00

0.00

0.00

504.4

504.4

302.7

303.1

303.1

303.1

0.00

0.00

0.00

0.00

0.00

0.00

465.0

465.0

277.0

278.5

278.5

278.5

0.00

0.00

0.00

0.00

0.00

0.00

497.8

497.8

298.4

299.0

299.0

299.0

0.00

0.00

0.00

0.00

0.00

0.00

513.5

513.5

308.7

308.8

308.8

308.8

0.00

0.00

0.00

0.00

0.00

0.00

\O{OO Q[N [N [ [ I |—

923.5

523.5

315.2

315.1

315.1

315.1

0.00

0.00

0.00

0.00

0.00

0.00

519.6

519.6

312.6

312.6

312.6

312.6

0.00

0.00

0.00

0.00

0.00

0.00

521.6

521.6

314.0

313.9

313.9

313.9

0.00

0.00

0.00

0.00

0.00

0.00

508.3

508.3

305.3

305.6

305.6

305.6

0.00

0.00

0.00

0.00

0.00

0.00

521.6

521.6

314.0

313.9

313.9

313.9

0.00

0.00

0.00

0.00

0.00

0.00

530.4

530.4

319.7

319.4

319.4

319.4

0.00

0.00

0.00

0.00

0.00

0.00

517.4

517.4

311.2

311.3

311.3

311.3

0.00

0.00

0.00

0.00

0.00

0.00

515.2

515.2

309.8

309.9

309.9

309.9

0.00

0.00

0.00

0.00

0.00

0.00

501.9

501.9

301.2

301.6

301.6

301.6

0.00

0.00

0.00

0.00

0.00

0.00

523.7

523.7

315.3

315.2

315.2

315.2

0.00

0.00

0.00

0.00

0.00

0.00

5104

5104

306.7

306.9

306.9

306.9

0.00

0.00

0.00

0.00

0.00

0.00

512.6

512.6

308.1

308.3

308.3

308.3

0.00

0.00

0.00

0.00

0.00

0.00

519.2

519.2

312.4

3124

312.4

312.4

0.00

0.00

0.00

0.00

0.00

0.00

517.0

517.0

311.0

311.0

311.0

311.0

0.00

0.00

0.00

0.00

0.00

0.00

530.2

530.2

319.6

319.3

319.3

319.3

0.00

0.00

0.00

0.00

0.00

0.00

512.6

512.6

308.1

308.2

308.2

308.2

0.00

0.00

0.00

0.00

0.00

0.00
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Table(8.5) Power sharing (MW) of the GT algorithm for the SCECO-East
Example(units 13-24)

5

13

14

15

16

17

Unit Number

18

19

20

21

22 23

24

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.80

0.00

53.89

60.85

60.85

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.80

0.00

53.89

0.00

60.85

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.80

0.00

53.89

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

77.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.84

78.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

0.00

0.00

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

0.00

0.00

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

0.00

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

0.00

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

0.00

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

0.00

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

0.00

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

0.00

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

0.00

60.85

60.85

67.77

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

53.89

60.85

60.85

67.77

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

53.89

60.85

60.85

67.77

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

53.89

60.85

60.85

67.77

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

53.89

60.85

60.85

67.77

67.81

68.86

0.00

0.00

0.00

78.84

78.80

53.86

53.89

60.85

60.85

67.77

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

53.89

0.00

60.85

gss&g%;:a&’;:s:g\om\)mmhum_

67.77

67.81

0.00

0.00

0.00

0.00

78.84

78.80

53.86

53.89

0.00

60.85
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Table (8.6) Load demand and hourly costs of the GT algorithm for the SCECO-East
Example

Z

LOAD

ED-COST

ST-COST

T-COST

2.58E+03

5.31E+04

0.00E+00

5.31E+04

2.50E+03

5.14E+04

0.00E+00

S.14E+04

2.40E+03

4.92E+04

0.00E+00

4.92E+04

2.34E+03

4.79E+04

0.00E+00

4.79E+04

2.30E+03

4.70E+04

0.00E+00

4.70E+04

2.12E+03

4.32E+04

0.00E+00

4.32E+04

2.27E+03

4.64E+04

0.00E+00

4.64E+04

2.42E+03

4.96E+04

0.00E+00

4.96E+04

2.58E+03

5.31E+04

0.00E+00

3.31E+04

2.63E+03

5.43E+04

0.00E+00

5.43E+04

2.70E+03

5.58E+04

0.00E+00

5.58E+04

2.64E+03

3.45E+04

0.00E+00

5.45E+04

2.70E+03

5.58E+04

0.00E+00

5.58E+04

2.74E+03

3.67E+04

0.00E+00

5.67E+04

2.75E+03

3.70E+04

0.00E+00

5.70E+04

2.74E+03

5.68E+04

0.00E+00

3.68E+04

2.68E+03

5.55E+04

0.00E+00

5.55E+04

2.90E+03

6.03E+04

0.00E+00

6.03E+04

2.84E+03

3.91E+04

0.00E-+00

5.91E+04

2.85E+03

5.93E+04

0.00E+00

5.93E+04

2.88E+03

3.99E+04

0.00E-+00

3.99E+04

2.87E+03

5.97E+04

0.00E+00

5.97E+04

2.80E+03

5.81E+04

0.00E+00

5.81E+04
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2.72E+03

3.64E+04

0.00E+00

5.64E+04

Daily operating cost = $1300104
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Table(8.7) Comparison between DP, SA, and the GT Algorithm for the SCECO-

East Example
Example DP SAA GT
Total Cost ($) SCECO-East| 1375865 1319391 1300104
% Cost Saving . 0 4.1 55
No. of Iterations/Generations v - 903 500

Daily Operating Cost ($)
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1250000

The Proposed Algorithms

Fig.(8.1) Comparison of the operating costs of different algorithms for the SCECO-

East Example
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8.4 SUMMARY

To further demonstrate the applicability of the proposed algorithms, a modified
version of two selected algorithms, ST and GT, are implemented to solve a sample of
data extracted from the SCECO-East system[126].

A comparison of the results obtained using the SA and the GT algorithms and a
dynamic programming-based algorithm, used by SCECO-East is presented.

A considerable improvement in the daily operating cost is achieved using both SA
and GT algorithms. These results basically show the effectiveness of the proposed
algorithms and their adaptability to real power systems.

The next chapter introduces the conclusions and the recommendations for future

work in this area.
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CHAPTER NINE

CONCLUSIONS AND RECOMMENDATIONS

The present study deals with thermal generation scheduling, which could be
considered as the major part of the whole scheduling problem of hydrothermal power
systems. The scheduling problem of thermal generating units is really a complex
optimization problem. It can be considered as two linked optimization problems as it
comprises the solution of both the unit commitment and economic dispatch problems.

The unit commitment problem is a combinatorial optimization problem with very
difficult constraints. The economic dispatch problem is a nonlinear optimization problem.

Research has been focused on UCP techniques with various degrees of optimality,
efficiency, and ability to handle difficult constraints. Exhaustive enumeration is the only
technique that can find the optimal solution, because it looks at every possible
combination of the generating units that fulfill the load demand and satisfy the system
constraints at all hours of the scheduling horizon. Basically, the high dimension of the
possible solution space, when a complete enumeration method is used, makes it
impracticable.

The growing interest for the application of artificial intelligence techniques to power
systems engineering has introduced the potentials of using this state-of-the art technology

in the thermal generation scheduling of electric power systems.
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Al techniques, unlike strict mathematical methods, have the apparent ability to
adapt to nonlinearities and discontinuities commonly found in power systems. The best
known algorithms in this class include evolution programming, genetic algorithms,

simulated annealing, tabu search, and neural networks.

9.1 CONCLUSIONS

Considering the implementations and the results of the proposed Al-based

algorithms for solving the UCP, the following conclusions could be extracted:

1) In the present study, seven different Al-based algorithms have been developed
to solve the UCP. Two of these algorithms, presented in chapters 3 and 5, are
considered as new implementations of existing techniques to solve the UCP.
These algorithms are:

* A simulated annealing algorithm , and
* A genetic algorithm approach.
The other five proposed algorithms, presented in chapters 4 and 6, are original and
are applied for the first time to solve the UCP. These algorithms are:
* A simple tabu search algorithm,

* An advanced tabu search algorithm,

*

A hybrid of the simulated annealing and tabu search algorithms,

*

A hybrid of genetic and tabu search algorithms, and

*

A hybrid of genetic, simulated annealing, and tabu search algorithms.
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As a first step to solve the UCP, some modifications to the existing problem
formulation have been made to be more generalized. An augmented model
including all the problem constraints is presented in chapter (2).

A major step in the course of solving the UCP is the solution of the EDP. In
this regard, an efficient and fast nonlinear programming routine is
implemented and tested. The routine is based on a linear complementary
algorithm for solving the quadratic programming problems as a linear
program in a tableau form. Comparing the results of the proposed routine, it is
found that the results obtained are more accurate than that obtained using an
IMSL quadratic programming routine. The application of this routine to the
EDP is a new contribution.

The comer stone in solving the combinatorial optimization problems is to
have good rules for finding randomly feasible trial solutions from an existing
feasible solution, in an efficient way. Because of the constraints in the UCP,
this is not a simple matter. The most difficult constraints to satisfy are the
minimum up/down times. A major contribution of this work is the
implementation of new rules to get randomly feasible solutions faster.

A new implementation of a Simulated Annealing Algorithm for solving the
UCP has been implemented in Chapter (3). Two cooling schedules are
implemented and compared, namely, the Polynomial-Time and Kirk’s cooling
schedules. The proposed SAA implementation has some advantages over
those presented in the literature. The starting solution is randomly generated,

while the SAA-67 starts with a solution obtained using a priority-list method
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that could be considered as a suboptimal solution. Our SAA provides a
methodology for determining the initial control parameter at which virtually
all trial solutions are accepted. Moreover, temperature decrement is governed
using statistics generated during the search (Polynomial-Time cooling
schedule). Regarding the comparison of results, our SAA gives better
solutions quality and takes about half the execution time that is taken by SAA-
67.

A novel application of tabu search method for the UCP is introduced in
Chapter (4). A Simple Tabu Search Algorithm for the UCP is proposed. The
STSA is based on the short-term memory procedure of the TS method. TS is
characterized by its ability to escape local optima by using a short-term
memory of recent moves. Different approaches for constructing the tabu list
for the UCP are presented and tested. Furthermore, different tabu list sizes are
tried to find the most reasonable one for the examples under study. The solved
examples showed that operating costs obtained by the proposed algorithm are
better than the operating costs reported in the literature. The successful
implementation presented in this work highlights the importance of the TS
approach as a powerful tool for solving such difficult combinatorial
optimization problems.

As an improvement to the proposed STSA, an Advanced Tabu Search
Algorithm (ATSA)is implemented for the UCP. The ATSA is based on more
advanced tabu search procedures, in addition to the basic short-term memory

function. The advanced procedures include intermediate memory and long
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term memory procedures and strategic oscillation. The operating costs
obtained by the proposed algorithm are better than those obtained using short
term memory and are also superior to the results reported in the literature.

A new Genetic Algorithm approach for the UCP is proposed in Chapter (5).
The proposed algorithm differs from other GA implementations in three
respects. First, the UCP solution is coded using a mix between binary and
decimal representations, thus saving computer memory as well as computation
time. Second, the fitness function is constructed only from the total operating
cost without including penalty terms. Third, to improve the speed of
calculations, the reproduction operators are implemented in a novel way. The
crossover operation is applied to the populations in its decimal form. The
mutation operator is used to induce new solutions in the population. Fourth, to
improve the fine local tuning capabilities of the proposed GA a special
mutation operator is designed based on a local search procedure. As a result, a
basic advantage of the proposed GA is the high speed of convergence, the
good quality of solutions obtained related to other methods, and the reduced
memory space required.

A novel hybrid algorithm, based on the integration of the main features of
both the SA and TS methods, is proposed. The main idea in the proposed ST
algorithm is to use the TS algorithm to prevent the repeated solutions from
being accepted by the SA. This saves time and improves the quality of
solution obtained. In the SA part, the polynomial-time cooling schedule is

used. Inthe TS part, the short-term memory procedures are implemented. The
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results show an improvement in the quality of solutions obtained compared
with results obtained by either the SA or TS algorithms.

A novel hybrid algorithm based on integrating genetic algorithm and tabu
search methods to solve the UCP is proposed. In the GT algorithm, the
implementation of the GA part is similar to that described in (8). Moreover,
tabu search is implemented within the GA to induce new members during the
reproduction phase of the GA, thus escaping from local minimum and
avoiding premature convergence. The effectiveness of the proposed algorithm
in solving the UCP has been demonstrated through the numerical examples. It
was found that the overall performance of the GT algorithm is superior to the
performance of both the individual GA and TS algorithms. The GT algorithm
converges faster and gives a better quality of solution.

A novel hybrid algorithm for solving the UCP is proposed. The algorithm
integrates the main features of the most commonly used artificial intelligence
methods for solving combinatorial optimization problems: genetic algorithm,
tabu search, and simulated annealing. The algorithm is mainly structured
around the GA, while the TS method is used to generate new members in the
GA population. The SA algorithm is used to accelerate the convergence of the
GA via testing all the GA members after each reproduction of a new
population. The implementation of the GA in the proposed algorithm is
similar to that described in (8). The TS implementation is based on the short
term memory procedures. In the SA part, a simple cooling schedule is used to

simplify and speed up the calculations. The results obtained are superior to
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those reported in the literature using Lagrangian Relaxation and Integer
Programming methods. Moreover, the obtained results (using the proposed
algorithm) are better than those obtained using the individual SA, TS or GA in
Chapters [3,4&5].
To emphasize the effectiveness and the applicability of our proposed
algorithms to real power systems, two of the proposed algorithms, SA and GT,
have been applied to a sample system extracted from the SCECO-East system.
A considerable improvement in the daily operating cost was achieved using
both the SA and the GT algorithms. Compared to the results of a dynamic
programming-based heuristic approach, the daily savings in cost for the SA
algorithm is 4.1% which amounts to approximately $56,474. For the GT
algorithm the daily cost savings is $75,761 which is equivalent to 5.5%.
It can be concluded that the seven proposed Al-based algorithms have several
common advantages, these are as follows:

* They do not need a complicated mathematical model of the problem

under study.
* The ease of implementation.
* They could find a high quality solution that does not strongly depend
on the choice of the initial solution.
* The ease of including any type of constraints that could be difficult

to state mathematically.
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* The algorithm could start with any given solution and try to improve

it.

9.2 RECOMMENDATIONS FOR FUTURE WORK

1) As a general suggestion for a future work in the area of Al-based methods,
parallel processing of any of the proposed algorithms could lead to the
following results:

* Reduce the computation time,

* Increase the possibility of solving a large scale power system in
reasonable time,

* Explore wider solution space, and

* A better quality of solution could be obtained.

2) More eclaboration is required in the direction of creating a fast and efficient
mechanism for randomly generating feasible trial solutions.

3) Our proposed GA approach is promising. More refinement could be done to
reduce computation time, which may increase the efficiency of the algorithm.

4) Hybridization of GA with other artificial intelligence techniques, e.g., neural
networks, fuzzy logic and expert systems, could improve the solution quality
and accelerate the calculations.

5) Some other constraints could also be taken into consideration such as:

transmission losses, transmission lines capacities and emission constraints.
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6) The hydrothermal scheduling problem can be solved by including the hydro
generation system into the proposed algorithms.

Some of these topics are already under investigations by the author.
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APPENDIX A

SOLVING THE ECONOMIC DISPATCH PROBLEM

A.1 THE LINEAR COMPLEMENTARY PROBLEM [6]

A.1.1 DEFINITION 1

Let M be a given p x p matrix, and q be a given p vector. The linear complementary

problem is to find vectors w and z such that:

w-Mz=q (A-1)
w,z20 (A-2)
wlz=0 (A-3)

Here, (wi,zi) is a pair of complementary variables. A solution (w,Z) to the above
system is called a complementary basic feasible solution if (W,z) is a basic feasible

solution to (A-1), and (A-2) and if one variable of the pair (Wi, z;) is basic fori=1,....p.

A.1.2 SOLVING THE LINEAR COMPLEMENTARY PROBLEM

If q is nonnegative then we immediately have a solution that satisfies (A-1), (A-2)
and (A-3) by letting w=q and z=0. If q<0, however, a new column 1 and an artificial
variable are introduced, leading to the following system, where 1 is a vector of ones.

w-Mz-1z5 =q (A-4)
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w, 220, 2,20 (A-5)

wlz=0 (A-6)
Letting Zo=maximum {-qi:1<i<p},z=0, and w = q+ 120, we obtain a starting
solution to the above system. Through a sequence of pivots, to be specified later that
satisfies (A-4)-(A-6), we attempt to derive the artificial variable zo to level zero, thus

obtaining a solution to the linear complementary problem.

A.1.3 DEFINITION 2
Consider the system defined by (A-4)-(A-6). A feasible solution (W,z, 2o) to this
system is called an almost complementary basic feasible solution if:
1. (W,z,Zo) is a basic feasible solution to (A-4) and (A-5).
2. Neither Ws norzs are basic, for some se{1,.......,p}.
3.20 is basic and exactly one variable from the complementary pair (wj,z;) is
basic, for j=I,......pand j#s.

Given an almost complementary basic feasible solution (W,z, Zo ), where w, z, and

* % =

Zo) are nonbasic, an adjacent almost complementary basic feasible solution (W,z,2o ) is
obtained by introducing either Ws or Zs in the basic if pivoting derives a variable other

than zo from the basis.

From the above definition it is clear that each almost complementary basic feasible

solution has, at most, two adjacent almost complementary basic feasible solutions. If

increasing Ws or Zs derives Zo out of the basis or produces a ray of the set in (A-4) and
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(A-5), then we have less than two adjacent almost complementary basic feasible

solutions.

A.1.4 SUMMARY OF LEMKE'’S COMPLEMENTARY PIVOTING

ALGORITHM

We summarize below a complementary pivoting algorithm credited to Lemke
(1968) for solving the linear complementary problem. Introducing the artificial variable
Zo, the algorithm moves among adjacent almost complementary basic feasible solutions
until either a complementary basic feasible solution is obtained or a direction indicating
unboundness of the region defined by (A-4) through (A-6) is found. As will be shown
later, under certain assumptions on the matrix M, the algorithm converges in a finite

number of steps with a complementary basic feasible solution.
A.1.4.1 INITIALIZATION STEP:
If g0, stop; (W,2)=(q,0) is a complementary basic feasible solution. Otherwise,
display the system defined by (A-4) and (A-5) in a tableau format.
Let —qs= maximum{ -qi:1<i<p}, and update the tableau by pivoting at row s and
Zo column. Thus the basic variables zo and w;i for j=1,...,p and j#s are
nonnegative. Let Ys = Zs, and go to the main step.
A.1.4.2 MAIN STEP
1. Let ds be the updated column in the current tableau under the variable ys .

Ids <0, go to step 4. Otherwise, determine the index r by the following
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minimum ratio test, where q is the updated right-hand-side column denoting the

values of the basic variables.

9 _ minimum -(?—i-idis >0 (A-7)

drs 1<i<p is

If the basic variable at row r is Zo, go to step 3. Otherwise, go to step 2.

2. The basic variable at row r is either wj orz|, for some 1#s. The variable ys
enters the basic, then the tableau is updated by pivoting at row r and the ys
column. If the variable that just left the basis is z|, then let ys=w;. Go to step
1.

3. Here, ys enters the basis, and 2o leaves the basis. Pivot at the ys column and
the Zo row, producing a complementary basic feasible solution. Stop.

4. Stop with ray termination. A ray R={(W,2,20)+Ad:A >0} is found such that
every point in R satisfies (A-4)-(A-6). Here (w,z,zo) is the almost
complementary basic feasible solution associated with the last tableau, and d is
an extreme direction of the set defined by (A-4) and (A-5) and has a 1 at the row
corresponding to ys, - d, at the rows of the current basic variables and zero

everywhere else.
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A.15 FINITE CONVERGENCE OF THE COMPLEMENTARY PIVOTING
ALGORITHM
The following lemma shows that the algorithm must stop in a finite number of
iterations, either with a complementary basic feasible solution or with ray termination.
Under certain conditions of the matrix M, the algorithm stops with a complementary

basic feasible solution.

A.1.5.1 LEMMA

Suppose that each almost basic feasible solution of the system (A-4)-(A-6) is
nondegenerate, that is, each basic variable is positive. Then none of the points generated
by the complementary pivoting algorithm is repeated, and furthermore, the algorithm

must stop in a finite number of steps.

A.1.6 TABLEAU FORM
Based on the discussions in the previous sections, we can size the tableau for any
problem in the linear complementary formulation as follows:
Let:
N: is the number of variables,
K: is the number of constraints rather than the nonnegativity, and
L= number of variables + number of constraints =N + K
The tableau size is then L x (2L+2). The following augmented matrix shows a

tableau for N=2, and K=1, then L=3
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| w | z [——2Zo---|R.H.S]

1 0 0 -1 b

0 1 0 ! M L1 L ct|(A)

0 0 1 P11 b e2

i L I L { 2 I
and

0 -A
M= -

where:

MisaL x L matrix,e.g. 3 x 3,

A is N x K matrix,e.g. 2x 1,

His N x N matrix, e.g. 2 x 2,

b is the right-hand sides of the constraints, and

cl, c2 are the coeficient the variables in the the linear part of the objective

function.
A.2 QUADRATIC PROGRAMMING

Quadratic programming represents a special class of nonlinear programming in
which the objective function is quadratic and the constraints are linear. In this section, we
show that the Kuhn-Tucker conditions of a quadratic programming problem reduce to a
linear complementary problem. Thus, the complementary pivoting algorithm described in

Section A.1 can be used for solving a quadratic programming problem.
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A.2.1 THE KUHN-TUCKER SYSTEM

Consider the following quadratic programming problem:

Minimize ~ c'x + 3 x'Hx (A-10)
Subjectto  Ax<b (A-11)
x<0 (A-12)

where c is an n vector, b is an m vector, A isanm x n matrix,and Hisann x n
symmetric matrix. Denoting the Lagrangian multiplier vectors of the two groups of
constraints (A-11) and (A-12) by u and v respectively, and denoting the vector of slack

variables by y, the Kuhn-Tucker conditions could be written as:

Ax+y=b (A-13)
-Hx-Alu+v=c (A-14)
xtv=0 (A-15)
uly=0 (A-16)
x,y,u,v>0 (A-17)
Now letting
0 -A
= A-18
M [At H} (A-18)
b
= A-19
] w

w= H (A-20)



_ u
z=| (A-21)

The Kuhn-Tucker conditions could be rewritten as the linear complementary

problem :
w-Mz=q, (A-22)
wlz=0, (A-23)
w,z20. (A-24)

In a matrix form:

e AR
y " [ng} (A-26)

Thus, the complementary pivoting algorithm discussed in Section A.1 can be used
to find the Kuhn-Tucker point of the quadratic programming problem. The theorem gives
proof that the linear complementary algorithm converges in a finite number of iterations

with a Kuhn-Tucker point.

A.2.2 THEOREM

Consider the problem of minimizing clx + %xtHx, subject to Ax<b, x<0.
Suppose that the feasible region is not empty. Further, suppose that the complementary
pivoting algorithm described in Section A.1 is used in an attempt to find a solution to the

Kuhn-Tucker system in (A-22) to (A-24). In the absence of degeneracy, under any of the
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Jollowing conditions, the algorithm stops in a finite number of iterations with a Kuhn-
Tucker point.

1. H is positive semidefinite and c=0

2. H is positive definite.

3. H has nonnegative elements with positive diagonal elements.

Furthermore, if H is positive semidefinite, then ray termination implies that the

optimal solution is unbounded.
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APPENDIX B

THEORY OF THE SIMULATED ANNEALING METHOD

B.1 METROPLIS ALGORITHM

As far back as 1953, Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)
introduced a simple algorithm evolution of a solid in a heat bath to thermal equilibrium
[98]. The algorithm introduced by these authors is based on Monte carlo techniques and
generates a sequence of the solid in the following way. Given a current state i of the solid
with energy E; , then a subsequent state j is generated by applying a perturbation
mechanism which transforms the current state into a next state by a small distortion, for
instance, by displacement of a particle. The energy of the next state is E; . If the energy
difference, E; - E;, is less than or equal to 0, the state j is accepted as the current state. If
the energy difference is greater than 0, the state j is accepted with a certain probability
which is given by [94];

Where T denotes the temperature of the heat bath and Ky a physical constant
known as the Boltzman constant. The acceptance rule described above is known as the
Metropolis criterion and the algorithm that goes with it is known as the Metropolis

algorithm. If the lowering of temperature is done sufficiently slowly, the solid can reach
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thermal equilibrium at each temperature. In the Metropolis algorithm this is achieved by
generating a large number of transitions at a given temperature value. Thermal
equilibrium is characterized by the Boltzman distribution [99]. This distribution gives
the probability of the solid being in state i with energy E; at temperature T, and is given

by

...El
Pr X~ ]"ﬁe p(KB T) ®2

where X is a stochastic variable denoting the current state of the solid. Z(T) is the

partition function, which is defined as;

Z(M= Zexp(K ETJ (B.3)

B.2 THE SIMULATED ANNEALING ALGORITHM

Let (s./) denote an instance of a combinatorial optimization problem and i and j two
solutions with cost f(i) and f(j) respectively. Then the acceptance criterion determines

when j is accepted from i by applying the following acceptance probability:

1 if f(j)<f(i)
Pe {accept] = exp(-f%'ﬂj if £(7))() o
o}

where ¢, denotes the control parameter.

B.2.1 CONJECTURE
Given an instance (sf) of a combinatorial optimization problem and a suitable

neighborhood structure then, after a sufficiently large number of transitions at a fixed
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value c,, applying the acceptance probability of (B.4), the simulated annealing algorithm

will find a solution i € s with a probability equal to

A _§(i

(B.5)

where X is a stochastic variable denoting the current solution obtained by the

simulated annealing algorithm and;

No (co)= Y exp(—10 ®.6)

jes P

denotes a normalization constant.

The probability distribution of (B.5) is called the stationary or equilibrium
distribution and is the equivalent of the Boltzman distribution of (B.2). The normalization
constant of (B.6) is the equivalent of the partition function of (B.3).

By using the stationary distribution of (B.5), a set of useful quantities can be
defined for optimization problems in a way similar to that for physical systems. Here we
define the following quantities [94]:

(i) The expected cost E; (f) at equilibrium is defined as:

A
Ec, =<f>c,

= Y f(i)Pc, {X=i B.7)
ies
= f(i) qi(cp)

ies

(ii) The expected square cost Ecp(fz)at equilibrium is defined as
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Ec, =<f>¢,

= 3 f3()Pc, {X=i (B.8)

=>"2(i) gi(cp)

ies

(iii) The variance Vare, (f) of the cost at equilibrium is defined as:

A 2
Varc, (f)=c“c,

= > (f())~Ec, () ?Pc, {X=i

ies (B9)
=" (f()-<f>c,)? qi(cp)

ies
= <f? >Cp —<f>2cp

(iv) The entropy at equilibrium is defined as

Sc, =- Y. qi(cp)Ingi(cp) (B.10)

ies

B.2.2 COROLLARY

Let the stationary distribution be given by (B.5), then the following relations hold;

d ol
<> =—2 (B.11)
2
0 Cc
9 sc =% 12
B.3 COOLING SCHEDULE

A finite-time implementation of a simulated annealing algorithm can be realized by

generating homogeneous Markov chains of finite length for a finite sequence of
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descending values of the control parameter. To achieve this, one must specify a set of
parameters that governs the convergence of the algorithm. These parameters are
combined in a so-called cooling schedule [94].

The parameters of a cooling schedule are

- an initial value of the control parameter

- a decrement function for decreasing the control parameter

- a final value of the control parameter specified by the stopping criterion, and

- a finite length of each homogenous Markov chain

The search for adequate cooling schedules has been the subject of study in many

papers [94].

B.3.1 QUASI EQUILIBRIUM
Let L, denote the length of the K®Markov chain and P cp the corresponding
value of the control parameter. The quasi equilibrium is achieved if a (L, , Cpx ), L.e., the
probability distribution of the solution after L, trials of the K Markov chain, is *
sufficiently close” to q(cPk ), the stationary distribution of px , defined by (B.5), (B.6),
ie.,
laltk.cpx ) —alcp )| <& (B.13)

for some specified positive value of €.
Requiring (B.13) to hold for arbitrarily small values of € implies that a number of
transitions is needed which is quadratic in the size of the solution space. This leads for

most combinatorial optimization problems to an exponential-time execution of the
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simulated annealing algorithm. Thus, for a practical application of the algorithm, we need
a less rigid quantification of quasi equilibrium than that of condition (B.13). In the
literature, this has led to different interpretations of the concept of quasi equilibrium

resulting in a rich variety of cooling schedules.

B.3.2 A POLYNOMIAL-TIME COOLING SCHEDULE

In this section, a cooling schedule presented by Aarts and Van Laarhoven
[100,101,102] is discussed. This cooling schedule leads to a Polynomial-Time execution
of the SAA, but it can not give any guarantee for the deviation in cost between the final
solution obtained by the algorithm and the optimal cost. The different parameters of the
cooling schedule are determined based on the statistics calculated during the search. In

the following we describe these parameters [94].

B.3.2.1 Initial Value of the Control Parameter c,

The initial value of Cp, is obtained from the requirement that initially, virtually all
proposed trial solutions should be accepted. Assume that a sequence of m trials is
generated at a certain value ofCp. Let mydenote the number of trials for which the
objective function value does not exceed the respective current solution. Let my=m -m,.

It can be shown that the acceptance ratio, X can be approximated by [94]:
X=(mq+ mz.exp(—xg/ Cp))/ (M1 +m2) (B.14)
Where, (Xf) is the average difference in cost over the m, cost-increasing trials.

From which the new temperature Cp is

(+)
cp = Af/In(mz2/(m2.X—m1(1- X) (B.15)
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B.3.2.2 Decrement of the Control Parameter

Assume that the condition for quasi equilibrium given in (B.13) may be replaced by

la(cex ) -alcpe+1)| < VK20 (B.16)
Thus for two successive values of the control parameter we want the stationary

distribution to be “close”. This can be quantified by requiring that

i(c
vies: 1 <3 (Cri) <1+3,k=01... (B.17)
148 Qi(Cpk.,1)
for some small positive number & that can be related to € of (B.16).

The following theorem provides sufficient conditions to satisfy (B.17)

Theorem

Let q(cpc) be the stationary distribution for the homogeneous Markov chain
associated with the simulated annealing algorithm with components given by (B.5) and
(B.6) and let cpy and cpy., be two successive values of the control parameter with cpy,, <
cpy, then the inequalities of (B.15) are satisfied if the following condition holds:

exp(——ai)

Vies: — K (145K =04,.. (B.18)
exp(——)

CpK +1
where: 6i = (i) - £,
which can be rewritten to give the following condition on the two subsequent

values of the control parameter:
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. Cpk
Vies: K=01... .
f(i) - fopt
By introducing some simplifications to the condition (B.18), condition (B.19) could

be rewritten as follows [94]:

Cpk _
Cpyq > - o LN(T7) K=01,... (B.20)

<f >Cpk —fopt + 30'Cpk

For many instances of combinatorial optimization problems the value of fopt is not
known. However, the average value and the spreading of the cost function typically

exhibit a similar behaviour as a function of the control parameter. Hence, we argue that
<f>cpc- fopt +30cpc can be replaced by 3ocpc and that the omission of the term
<f>cpk- fopt is counterbalnaced by choosing samaller values of & . Thus, (B.20) can be

replaced by the following expression:

_ Crk -
Cpk+1 - Cp [_n(1+8) ,K -—0,1,... (B.zl)
1+ K=
3c Cpk
The amount by which the value of Cp is decreased by the decrement function of
(B.21) is determined by the value of 3, hereafter called the distance parameter. Small

values of & lead to small decrements; large values of & lead to large decrements in Cp.

Typical values of § are between 0.1 and 0.5.
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B.3.2.3 The Final value of the control parameter
Termination in the Polynomial-Time cooling schedule is based on an extrapolation
of the expected average cost, < f >cpy , for Cpk approaches zero value. Let
A <f>cp=<f>cp —fopt (B.22)
Then, execution of the algorithm is terminated if A <f >cp, , the expected cost at
Cp,- For sufficiently large values of cp, we have <f>cp,~<f >». Hence, we may
approximate A <f>c, for cp <<1 by:

o<f>c,

P (B.23)

A <f>cy=Cp.

Hence, the algorithm may be terminated if, for some value of k, we have [94] :
et e
w3 2 <e (B.24)
(e Cp Cp=Cp
where, ¢ is some small positive number, referred to as the stop parameter. In our

implementation £ =0.00001.

(d) The Length of Markov Chains

In [94], it is concluded that the decrement function of the control parameter,
(B.21), requires only a ‘small’ number of trial solutions to rapidly approach the stationary
distribution for a given next value of the control parameter. The word ‘small’ can be
specified as the number of transitions for which the algorithm has a sufficiently large
probability of visiting at least a major part of the neighborhood of a given solution. In
general, a chain length of more than 100 transitions is reasonable [94]. In our

implementation good results have been reached at a chain length of 150.
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APPENDIX C

DATA OF THE SOLVED EXAMPLES

C.1 DATA OF EXAMPLE 1

This example is taken from reference [29].

C1.1 DAILY LOAD DEMAND

HR LOAD SPINNING
(MW) RESERVE (MW)
1 1025 85
2 1000 85
3 900 65
4 850 55
5 1025 85
6 1400 110
7 1970 165
8 2400 190
9 2850 210
10 3150 230
1 3300 250
12 3400 275
13 3275 240
14 2950 210
15 2700 200
16 2550 195
17 2725 200
18 3200 220
19 3300 250
20 2900 210
21 2125 170
22 1650 130
23 1300 100
24 1150 90




C.1.2 PRODUCTION COST FUNCTION PARAMETERS

Unit | A(s/mwiur) |B($/MW.HR)| C($/HR)
1 0.00113 9.023 820
2 0.0016 7.654 400
3 0.00147 8.752 600
4 0.0015 8.431 420
5 0.00234 9.223 540
6 0.00515 7.054 175
7 0.00131 9.121 600
8 0.00171 7.762 400
9 0.00128 8.162 725
10 0.00452 8.149 200

C.1.3 MINIMUM AND MAXIXMUM OUTPUT LIMITS OF UNITS

Unit P min MW) I:‘max (MW)
1 300 | 1000
2 130 400
3 165 600
4 130 420
5 225 700
6 50 200
7 250 750
8 110 375
9 275 850
10 75 250

C.1.4 MINIMUM UP/DOWN TIMES AND START-UP COST PARAMETRS

Unit Tup Tdown STo Bl BZ Bo
1 5 4 2050 1 0.25 825
2 3 2 1460 1 0.333 650
3 2 4 2100 1 0.25 950
4 1 3 1480 | 0.25 650
5 4 5 2100 1 0.333 900
6 2 2 1360 1 0.5 750
7 3 4 2300 1 0.25 950
8 1 3 1370 1 0.333 550
9 4 3 2200 l 0.25 950
10 2 1 1180 1 0.5 625

N



C.2 DATA OF EXAMPLE 2

This example is taken from reference [41].

C2.1 DAILY LOAD DEMAND

HR_|LOAD (MW)
1 1459
2 1372
3 1299
4 1285
5 1271
6 1314
7 1372
8 1314
9 1271
10 1242
11 1197
12 1182
13 1154
14 1138
15 1124
16 1095
17 1066
18 1037
19 993
20 978
21 963
22 1022
23 1081
24 1459

* spinning reserve = 10%



C.2.2 PRODUCTION COST FUNCTION PARAMETERS

Unit A (s/mw2ur) [ B(s/MW.HR) C($/HR)
1 0.0051 1.4 15
2 0.00396 1.5 25
3 0.00393 1.35 40
4 0.00382 1.4 32
5 0.00212 1.54 29
6 0.00261 1.35 72
7 0.00127 1.3954 105
8 0.00135 1.3285 100
9 0.00289 1.2643 49
10 0.00148 1.2136 82

C.2.3 MINIMUM AND MAXIXMUM OUTPUT LIMITS OF UNITS

C.2.4 MINIMUM UP/DOWN TIMES AND START-UP COST PARAMETRS

Unit Pmin (MW) P max (MW)
1 15 60
2 20 80
3 30 100
4 25 120
5 50 150
6 75 280
7 250 520
8 50 150
9 120 320
10 75 200

Unit | Ty | Taown | ST, B, B, B,
1 2 5 85| 0588 | 02 0
2 2 5 10l_| 059 | 02 0
3 2 5 114 | 057 | 02 0
4 2 5 94 0.65 | 0.18 0
5 2 5 113 | 0639 | 0.8 0
6 2 5 176 | 0.568 | 0.15 0
7 2 5 267 | 0749 | 0.09 0
8 2 5 282 | 0.749 | 0.09 0
9 2 5 187 | 0617 | 0.13 0
10 2 5 227 | 0641 |_0.11 0

227
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C.3 DATA OF EXAMPLE 3

This example is taken from reference [62,63].

C3.1 DAILY LOAD DEMAND
HR | LOAD (MW)
1 1820
2 1800
3 1720
4 1700
5 1750
6 1910
7 2050
8 2400
9 2600
10 2600
11 2620
12 2580
13 2590
14 2570
15 2500
16 2350
17 2390
18 2480
19 2580
20 2620
21 2600
22 2480
23 2150
24 1900




C.3.2 PRODUCTION COST FUNCTION PARAMETERS

9

Unit A (s/MW2.HR) B ($/MW.HR) C($/HR)
1 0 25.547 24.389
2 0 25.675 24.411
3 0 25.803 24.638
4 0 25.932 24.76
5 0 26.061 24.888
6 0 37.551 117.755
7 0 37.664 118.108
8 0 37.777 118.458
9 0 37.89 118.821
10 0 13.327 81.136
11 0 13.354 81.298
12 0 13.38 81.464
13 0 13.407 81.626
14 0 18 217.895
15 0 18.1 218.335
16 0 18.2 218.775
17 0 10.695 142.735
18 0 10.715 143.029
19 0 10.737 143.318

20 0 10.758 143.597
21 0 23 259.171
22 0 23.1 259.649
23 0 23.2 260.176
24 0 10.862 177.057
25 0 5.492 202.5

26 0 5.503 20291
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C.3.3 MINIMUM AND MAXIXMUM OUTPUT LIMITS OF UNITS

Unit l:‘min MW) Pmax (MW)
1 24 12
2 2.4 12
3 2.4 12
4 24 12
5 24 12
6 4 20
7 4 20
8 4 20
9 4 20
10 15.2 76
11 15.2 76
12 15.2 76
13 15.2 76
14 25 100
15 25 100
16 25 100
17 54.25 155
18 54.25 155
19 54.25 155
20 54.25 155
21 68.95 197
22 68.95 197
23 68.95 197
24 140 350
25 140 350
26 140 350
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C.3.4 MINIMUM UP/DOWN TIMES AND START-UP COST PARAMETRS

ST,

30
30
30
30
80
80
80
80
100

100

100
200
200
200

200
300
300
300
500
800
800

Tdown

Tup

Unit

10

11

12
13

14
15
16
17
18
19
20
21

22
23

24
25

26




C.4 DATA OF THE SCECO-EAST EXAMPLE

C4.1 DAILY LOAD DEMAND

HR LOAD
MW)
1 2580
2 2500
3 2400
4 2340
5 2300
6 2120
7 2270
8 2420
9 2580
10 2630
11 2700
12 2640
13 2700
14 2740
15 2750
16 2740
17 2680
18 2900
19 2840
20 2850
21 2880
22 2870
23 2800
24 2720

* Spinning reserve = 400 MW

N



J

C4.2 UNITS DATA
Unit A B C Pmin IJmax Tup Tdown
No. ¢/ Mw2. ER |(8/ MVER)| ($/HR) | (MW) | MW) | @®R) | (HR)
1 7.62E-03 13.728 605.779 250 625 8 8
2 7.62E-03 13.728 605.779 250 625 8 8
3 1.17E-02 14.346 1186.087 180 400 8 8
4 1.22E-02 14.020 1235.064 190 400 8 8
5 1.22E-02 14.020 1235.064 190 400 8 8
6 1.22E-02 14.020 1235.064 190 400 8 8
7 3.29E-02 15.240 671.691 33 75 4 2
8 3.26E-02 15.266 671.186 33 77 4 2
9 3.24E-02 15.278 670.939 33 78 4 2
10 | 4.95E-02 14.087 383.963 33 69 4 2
11 | 4.90E-02 14.126 383.200 33 67 4 2
12 | 4.55E-02 14.410 377.669 20 66 4 2
13 | 4.46E-02 14.483 376.284 15 68 4 2
14 | 4.46E-02 14.483 376.291 15 68 4 2
15 | 4.49E-02 14.468 376.461 15 69 4 2
16 | 1.07E-02 16.793 633.426 20 81 4 2
17 | 1.08E-02 16.782 633.584 20 82 4 2
18 | 1.06E-02 16.795 633.408 20 81 4 2
19 | 4.60E-02 13.710 317410 15 79 4 2
20 | 4.60E-02 13.710 317.410 15 79 4 2
21 | 4.60E-02 13.710 317,410 10 54 4 2
22 | 4.60E-02 13.710 317.417 15 54 4 2
23 | 4.60E-02 13.709 317.426 15 61 4 2
24 | 4.60E-02 13.709 317.426 15 61 4 2
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NOMENCLATURE

The following notation is used throughout the thesis:

A;,B;,C; Cost function parameters of unit i (§/ MW 2.HR, $/MW.HR, $/HR)

Cp Control parameter (temperature) of the cooling schedule.
Cp“ Control parameter value at iteration k.

Cp, Initial value of the control parameter.

Di,Ei Start-up cost coefficients for unit ($).

Fit(Pt)  Production cost of unit i at time t (§/HR).

Fr Total operating cost over the scheduling horizon (3)

Fik The total operating cost for a current solution i at iteration k

N Number of available generating units.

Pit Output power from unit i at time t (MW).

Pik Output power from all units for a current solution i iteration k.
Prin, Unit i minimum generation limit (MW).

Pmax, Unit i maximum generation limit (MW).

PDt System peak demand at hour t (MW).

Rt System reserve at hour t (MW).
STit Start-up cost of uniti at hourt.
SH; Shut-down cost of uniti at hour t.

Soj Uniti cold start-up cost .



Tup,
Tdowni
Toni
Toffi
Tshut;
Tstarti
X0,7)
UWab

Uit
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Scheduling time horizon, (24 HRs).

Unit i minimum up time.

Unit i minimum down time.

Duration during which unit i is continuously ON.
Duration during which unit i is continuously OFF.
Instant of shut down of a unit i.

Instant of start-up of a unit i.

The uniform distribution with parameters 0, and 1
The discrete uniform distribution with parameters a and b.
Uniti status at hour t.

=1 if the unit is ON and 0 if OFF at hourt.

Unit status matrix for a current solution i at iteration k.

Unit i start-up status at hour t.

=1 if the unit is started at hour t and 0 otherwise.
Unit start-up/shut-down matrix for a current solution i at iteration k

Unit i shut-down status at hour t.

= 1 if the unit is turned off at hour t and 0 otherwise

is the standard deviation of the cost values generated at the kth Markov chain,
corresponding to cp* in the simulated annealing algorithm.

is a constant called distance parameter, used in in the simulated annealing

algorithm.
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LIST OF ABBREVIATIONS

SA: simulated annealing

TS: tabu search

GAs: genetic algorithms

GA: genetic algorithm

SAA simulated annealing algorithm

SAA-67 simulated annealing algorithm in the reference number 67
STSA simple tabu search algorithm

ATSA advanced tabu search algorithm

ST hybrid algorithm of simulated annealing and tabu search
GT hybrid algorithm of genetic and tabu search

GTS hybrid algorithm of genetic, tabu search and simulated annealing
UCpP unit commitment problem

EDP economic dispatch problem

UCT unit commitment table

DP dynamic programming

LR Lagrangian relaxation

IP integer programming

MIP mixed integer programming

PL priority list

ES expert systems



STM

IT™™

LT™M

SO

TL

AV

Z

GUTL

NPOP

ED-COST

ST-COST

T-COST

HR

MW

SCECO-East

neural networks

short term memory

intermediate term memory

long term memory

strategic oscillation

tabu list

aspiration level

tabu list size

generating unit tabu list

number of population in the genetic algorithm
economic dispatch cost per hour
start-up cost per hour

total cost per hour

hour

mega watt

The Saudi Consolidated Electric Company in the Eastern Province.
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