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ABSTRACT
Name: Mohamed Ali Abido
Title: Intelligent Techniques Approach to Power Systems

Identification and Control
Major Field: Electrical Engineering

Date: 1997

Identification and control of power systems is one of the major problems of interest in
the power system area. Conventional methods of power systems identification and
control are very unattractive because they are too cumbersome for on-line applications,
based on linear models of power systems, and not easy to implement. The applications of
intelligent techniques to power systems identification and control are scrutinized in this
dissertation.

Radial basis function networks (RBFNs) are proposed for off-line as well as on-line
identification of synchronous generators. The proposed algorithms are able to capture the
nonlinear dynamics of synchronous generators and produce parsimonious models with
simple structures. On the control side. a strategy using RBFN to adaptively tune power
system stabilizers (PSSs) parameters on-line based on real-time measurements of system
operating conditions is proposed.

A hybrid neuro-fuzzy power system stabilizer using fuzzy basis function network is
proposed. The proposed stabilizer combines the different strengths of neural networks
and fuzzy logic systems and overcomes each other’s weaknesses. Unlike the conventional
PSS, the proposed stabilizer incorporates the linguistic and numerical information in a
uniform fashion.

Incorporating genetic algorithms (GA) into the design of PSS is also proposed. The

suggested approach uses GA to search for the optimal settings of PSS parameters. One of



the most important features of the proposed approach is the fact that minimal knowledge
of the system is required. In addition, an explicit linearized mathematical model of the
system is oot needed to design the proposed stabilizer.

An approach to integrate the use of GA and rule-based systems to design a genetic
rule-based PSS is proposed. The proposed technique is also applied to integrate the use of
GA and fuzzy logic systems in order to design a genetic-based fuzzy logic PSS. The
proposed approach incorporates GA to search for optimal settings of rule-based and fuzzy
logic PSSs parameters and efficiently overcomes the difficulties in design of these
stabilizers.

The proposed identification and control schemes introduced in this dissertation have
been tested on several power systems with different complexities and under different
disturbances and loading conditions. The results obtained by the proposed schemes are
compared with those reported in the literature.

The major features of the proposed schemes are:

e Easy to tune because of their decentralized nature

e Easy to set up and implement using microcomputer

¢ Linguistic and numerical information can be easily incorporated
e Far less information than other design techniques is required

e Cooperatively work with the existing conventional schemes

¢ Efficiently combine strengths of different intelligent techniques

¢ Properly work over a wide range of operating conditions

DOCTOR OF PHILOSOPHY DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA
199~
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CHAPTER1

INTRODUCTION

1.1 RESEARCH PROBLEM

When engineers are confronted with a challenging problem, it is their responsibility to
conceive new and improved tools to solve the problem. On the other hand, once a new
tool is available, they will use it to reexamine the problem to find still better and more
economical solutions. Power system identification and control is a typical challenging
engineering problem which is concerned with the behavior of the synchronous machines
after they have been perturbed.

Synchronous machines are major comporznts in electric power systems and their
performance is directly related to security and stability of power system operation. A
synchronous machine is a highly nonlinear, fas:-acting, multi-variable system with a wide
range of time constants in different loops. Interconnected in a power system, synchronous

machines operate over a wide range of var-ing operating conditions. The dynamic



characteristics of the synchronous machines vary as condtions change, but the output has
to be coordinated so as to satisfy the requirements of power system operation. As a matter
of fact, identification and control of synchronous generaters continues to be the subject of
extensive research. The design of modern generating units, the increasing complexity in
power systems, and the demands of economic and operational requirements all contribute
to the need of more effective identification and control sciemes.

Many synchronous machine models have been developed [1-2]. In general, simple
machine models are good for analysis purposes but not accurate enough for predicting
machine performance for control purposes. Unfortunately, the complicated models are
too cumbersome for on-line applications. Generally, the synchronous machine is a very
complex nonlinear system with dynamics and nonlinearides which cannot be modeled in
precise mathematical terms.

On the other hand, nearly all the controllers described in the literature have been
designed for linearized analytical models of the plant. 4 synchronous machine may be
represented by a set of nonlinear equations. To design z controller, it is usual to reduce
the order of the nonlinear model and linearize the 2juations by considering small
deviations around a chosen steady state operating coriition. The designed controller
parameters remain fixed. Generally, the power systers are highly nonlinear and the
operating conditions can vary over a wide range as a res_t of load changes, line outages,
and unpredictable major disturbances such as thre: phase faults. Therefore. the

performance is degraded whenever the operating point cz:nges from one to another.



1.2 THESIS MOTIVATION

Recently, many intelligent techniques have been developed such as rule-based
systems, neural networks, fuzzy logic systems, and genetic algorithms. The applications
of these intelligent techniques to various power system problems have been demonstrated
by many investigators with promising results. However, the application of these
techniques is still in its infant stage and only recently has started to receive growing
attention from power system researchers.

The motivations behind the interest in using the intelligent techniques approach to
power system identification and control problems can be divided into two main

categories: theoretical and practical reasons as follows.

1.2.1 THEORETICAL REASONS

e As a general rule, a good engineering approach should be capable of making
effective use of all the available information. If the mathematical mcdel of a
system is to difficult to obtain (this is true for power systems), then the most
important information comes from two sources: (1) sensors which provide
numerical measurements of key variables and (2) human experts whc provide
linguistic description about the system and control instructions. iz:elligent
techniques, by design, provide a systematic and efficient way to deal w:th these

sources of information. Moreover. they provide an efficient frame-ork for



incorporating linguistic information from human experts. Conventional
techniques, however, can not incorporate the linguistic information into their
designs.

Intelligent techniques are based on model-free approach; i.e., they do not require a
mathematical model of the system under investigation. Engineers are now facing
more and more complex systems, and the mathematical models of these systems
are increasingly difficult to obtain. Thus, model-free approaches have taken on
added importance.

The intelligent techniques based controllers are nonlinear ones, which are well
justified by the universal approximation theorem,; i.e., these controllers are general
enough to perform any nonlinear control actions. Therefore, by carefully choosing
the parameters of controllers, it is always possible to design a controller that is

suitable for the nonlinear system under control.

1.2.2 PRACTICAL REASONS

Intelligent techniques are easy to understand. Because intelligent techniques
emulate human strategy, the underlying principle can be easily understood by
those who are not specialists. During the last two decades, conventional control
theory has been using increasingly advanced mathematical tools. This is needed in
order to solve difficult problems in a rigorous fashion. However, this also results

in a diminishing number of practical engineers who can understand the theory.



Therefore, the practical engineers who are in the front line of designing consumer
products tend to use approaches that are simple and easy to understand. Intelligent
techniques are just such an approach.

e The recent research in optics and analog VLSI has indicated that these
technologies can achieve enormous improvement in computational power relative
to the current technology. To take full advantage of these new capabilities,
computer programs have to be broken up into parallel calculations. But, since the
vast majority of existing computer programs are loaded down with IF statements,
loops, and long sequences of instructions, this would be almost impossible. The
shift to the intelligent techniques is simply to develop more broad general-purpose
systems which could take full advantage of the capabilities of the new hardware
technologies and admit a high degree of parallel implemzntation.

e Intelligent techniques are inexpensive to develop. From a practical point of view,
the development cost is one of the most important criteria for a successful
product. Because intelligent techniques are naturally inspired models of the brain
and are built to mimic its known hardware and capabiliies, the time necessary to
learn the approach is short: i.e.. the “software cost™ is low. Also, because these
techniques are simple to implement, the “hardware ccst™ is also low. Thus, the
intelligent techniques approach has a high performance :ost ratio.

In the above discussion, the theoretical reasons emphasiz: generality and rigor of

intelligent techniques, while the practical reasons empzasize applicability and

implementability of these techniques.



1.3 THESIS OBJECTIVES

In this thesis, the power system identification and control problem is weated using

intelligent techniques. This approach is adopted to achieve the following objectives:

1.

(93]
.
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Proposing a radial basis function neural network for the problem of off-line and on-
line identification of synchronous machines.

Proposing a radial basis function neural network to adaptively tune the power system
stabilizer parameters based on real-time measurements of machine loading conditions.
Proposing a hybrid neuro-fuzzy power system stabilizer. The proposed stabilizer
provides a natural framework for combining numerical information in the form of
input-output pairs and linguistic information in the form of [F-THEN rules in a
uniform fashion.

Proposing genetic algorithms for searching for optimal settings of power system
stabilizer parameters in order to enhance the system stability over a wide range of
operating conditions.

Proposing a hybrid genetic rule-based power system stabilizer in whica the control
rules will be tuned and optimized using genetic algorithms.

Proposing a hybrid genetic based fuzzy logic power system stabilizer in which the
parameters of fuzzy logic controller will be tuned using genetic alg:rithms. This
incorporation of genetic learning into a fuzzy design process will ad¢ :n intelligent
dimension to the fuzzy controller and overcome the problems associatsd with fuzzy

controller design.



1.4 THESIS ORGANIZATION

The thesis is organized as follows. Chapter II presents a review of the basic concepts
of the intelligent techniques. In chapter III, the proposed off-line identification scheme of
a svachronous machine using radial basis function networks is presented. On-line
identification of a synchronous machine is presented in chapter IV. Adaptive tuning of a
power system stabilizer using a radial basis function network is presented in chapter V.
Chapter VI presents a hybrid neuro-fuzzy power system stabilizer which represents a
natural framework to combine the numerical information and linguistic information in a
uniform fashion. Chapter VII presents an approach that uses genetic algorithms to search
for the optimal settings of the PSSs. Hybridizing rule-based PSSs with genetic algorithms
to tuze the control rules is introduced in chapter VIII. A genetic based fuzzy logic power
system stabilizer is presented in chapter [X where genetic algorithms are used to optimize
the fuzzy logic power system stabilizer parameters in order to overcome the design
probiems of fuzzy logic stabilizers. Conclusions and suggestions for future research are

presented in chapter X .



CHAPTER 2

INTELLIGENT TECHNIQUES - A REVIEW

2.1 ARTIFICIAL NEURAL NETWORKS

The human information processing system consists of the biological brain. Its basic
building block is the neuron, the cell that communicates information to and from the
various parts of the body. Neurons are interconnected into a biological neural network. A
neuron may be modeled as a processing unit that collects inputs and then processes them
to produce an output. Such a processing unit is shown in Fig. 2.1. It has »n input
connections and a set of local parameters. These local parameters constitute its basic
memory. Typically, they form a vector' w = (w,, Wy ., w,)", where the ith component,
w,, denotes the weight associated with the jth input connection. Sometimes, there is a
bias, wy, associated with the unit. The unit receives an input X = (x;, X3 ..., x,,)T from

either the environment or the outputs of other units. Given an input X, it uses its weight

! Throughout the thesis, vectors zre denoted by small boldfaced symbols. whereas matrices are
denoted by capital boldfaced symbols. Components of vectors and matrices are denoted by small symbols
that are not boldfaced.



vector w and its possibly extra bias w, to compute its net input, net. Typical computations

include:
net(X) = x.w + wy, @.D
= z": WX, (2.2)
=0
where x;,= 1, and
net(x)=| x-w |. 2.3)

Equation (2.2) treats the bias w, as a weight associated with a connection to a fictitious

input of value fixed to 1. The unit computes its net input and then passes the result

through an activation (output) function f. This yields the output, o, of the unit. Typical
forms of fare the linear f{net) = net, the logistic sigmoid f{net) = l/(1+exp{;;zet}), and, for
net given by (2.3), the Gaussian f{ner) = exp{-netz }.

Artificial neural networks (ANNS) are created by interconnecting many of these units.

Their characteristics can be summarized as follows:

e They contain a number of processing units (neurons) operating in parallel at any
given moment.

e They store information (knowledge) in the interconnection weights of the units. New
information is added by adapting the weight values (learning). Natworks trained to
operate in a specific environment can be easily retrained to deal vith minor changes
in the environmental conditions. Moreover, in nonstationary ecvironments, many

networks are capable of adapting their weights in real-time.
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e They usually exhibit fault-tolerant characteristics. Damage to individual units can
occur without a severe degradation of the overall performance.

e They are model-free systems. They are concerned with transformations rather than
traditional algorithms and procedures.

Hence, ANNs provide a completely new and unique way to look at information
processing. They have already been shown to elegantly and powerfully realize solutions
to problems in various fields such as identification and control of nonlinear dynamic
systems, pattern recognition, prediction, and database retrieval.

In this thesis, backpropagation neural network and radial basis function network will

be used. The structure and operation of these networks are discussed in what follows.

2.1.1 BACKPROPAGATION NETWORKS

A backpropagation neural network ('BPNN) is a multi-layer ANN that learns an input-
output mapping by using a supervised learning algorithm called “backpropagation”. The
backpropagation learning algorithm is a gradient descent procedure that encodes an input-
output mapping by adapting the free parameters (mainly the weights) of the network so as
to minimize a cost function evaluated over a training set. The name “backprcpagation”
stems from the fact that the error signals generated at the network output, tecause of
differences between desired and actual output values, are propagated backwarZs through

the network so as to make adjustments.



fnet(x))

Fig. 2.1 A generic processing unit.
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The basic BPNN is a multi-layer feed-forward network that contains inter-layer

connections with each unit on a layer providing an input only to each and every unit on

the next layer. Figure 2.2 shows a basic 3-layer BPNN. It has n input units, m hidden

units, and ¢ output units. Its operation can be described as follows:

L.

2.

An n-dimensional input vector x is applied to the input layer.
The input units have a single input and a single output. They simply pass the values
on their inputs to their outputs. It is a valid remark that, here, the input layer serves no
functional purpose.
The jth hidden unit computes its net input, nety;, using
net(x)=x.v;+vy, j=1,...m, 24)
where v; = (v, vj5 ..., vj,l)T and v are the weight vector and bias of the jth hidden
unit, respectively.
The jth hidden unit computes its activation (output), /;, using
h(x) = fofnety(x), j=1...m (2.5)
where £, is the activation function of the jth hidden unit.
The jth output unit computes its net input. net,;, using
nety(x)=hix) . w;+wy, j=1,...¢ (2.6)
where w, and wy, are the weight vector and bias of the jth output unit, respectively.
The jth output unit computes its activziion. o;, using
o(x =f(net,(X)). j=1, ... C 2.7
where f;; is the activation function of :ae jth output unit. This yields the output vector,

o, of the network and completes its opzration.
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01 02 Oc
o O O output layer
W1, W10 W2, wao Wc, Weo
h1 h2 hm
1
© o o hidden layer
V1, V1o V2, V20 Vm, Vmo
L -
1
© o o input layer
X1 X2 Xn

Fig. 2.2 A basic 3-layer BP network’.

*To keep the figure clear, not all connections are shown; there is actually a connection Fo= the output
of each unit on a layer to the input of each and every unit on the next layer.
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The above computations are done in parallel on a layer-by-layer basis. In brief, the jth

output of the network is given by

0,(x) =fo,-(§ »v,ifu(g vgx), j=1...c 2.8)

where f,(x) = x, = 1. Extending the computations to a network with any number of
hidden layers is straightforward. The activation functions may have identical or differen:
forms. However, the used forms must be differentiable. The most common forms are the
linear f{nef) = net and the logistic sigmoid flnet) = (1+exp{-net}), where net is the net
input to the unit.

It has been proved that a 3-layer BPNN, with one hidden layer of sigmoidal units and an
output layer of linear units, can approximate arbitrary continuous mappings to anyv

required degree of accuracy[3-5].
2.1.2 RADIAL BASIS FUNCTION NETWORKS

A radial basis function network (RBFN) is a 3-layer feed-forward ANN that is basec
on the traditional radial basis function (RBF) approach to multi-variate interpolatior.
Powell [6] has reviewed the RBF interpolating approach, and Micchelli [7] has provec
some important results on its solvability. Motivated by the philosophy that networks ma:
be viewed as devices for interpolating data in multi-dimensional spaces. Broomhead ar.:
Lowe [8] have generalized some of the assumptions found in [6] and [7]. and hav:

proposed the RBFN as an alternative architecture for learning input-output mappings.
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An RBFN consists of an input-hidden nonlinear mapping followed by a hidden-
output linear mapping. Each hidden unit computes a nonlinear function of 2 measure of
the distance between the network input and the unit’s weight vector (usually called the
“center” of the unit). Thus, the linear output of the network is expanded on a basis given
by a set of radially symmetric functions. In practice, the output of the hidden unit peaks
when the input is at its center and falls off monotonically as the input moves away from
it. Thus, the hidden units of an RBFN may viewed as populations of neurons with
response characteristics that are locally-tuned or selective for some range of the input
variables.

An RBFN is a 3-layer feed-forward network with each unit on a layer providing an
input only to each and every unit on the next layer. It is a linear-output network, since all
output units have linear activation functions. An RBFN with » input units, m hidden
units, and ¢ output units, is depicted in Fig. 2.3. The network operation can be described
as follows:

1. An n-dimensional input vector x is applied to the input layer.

2. The input units have a single input and a single output. They simply pass the values
on their inputs to their outputs. [t is a valid remark that, here, the input layer serves no
functional purpose.

The jth hidden unit computes its net input, net;,, using

L)

, j=1,...m, 2.9)

!
nety(x)= | x-¢



o1 02 Oc
(o) (o) (o) Q output layer
W1, W10 w2, w20 We, Weo
f
h1 h2 hm
1
© O O hidden layer
C1 Cc2 Cm
O O O input layer
X1 X2 Xn

Fig. 2.3 A radiz’ basis function network’.
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* To keep the figure clear, not all connecti:=s are shown; there is actually a connection from the output

of each unit on a layer to the input of each anc :-ery unit on the next layer.
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where | . || is the Euclidean distance, and ¢ is the weight vector (center) of the jth
hidden unit. Thus, the net input to a hidden unit equals the distance between the input
vector x and the unit center c;.
4. The jth hidden unit computes its activation (output), 4, using
hi(x) = f(nety(x)), j=0,...m, 2.10)
where f; is the activation function of the jth hidden unit. In (2.10) the bias term is
included by starting j at 0 and Ay(x) = fi4(x) = 1.
5. The jth output unit computes its net input, net,;, using
nety(x)=h(x).w; , j=1,...,¢ (2.1D)
where w; is the weight vector of the jth output unit.
6. The jth output unit computes its activation, o;, using
o(x)=net(x), j=1...,¢ (2.12)
This yields the output vector, o, of the network and completes its operation.
The above comp;utations are done in parallel on a layer-by-layer basis. In brief, the jth

output of the network is given by

00=Y wifil] x-¢ ), j=L...c (2.13)

1=0

The activation functions of all hidden units are of the same form. Typical forms
include the Gaussian
Sl x-¢, PD=exp{-05] x-¢ 176}y, i=L...m (2.14
where the center c; corresponds to the mean of the Gaussian function, whereas o, denotes

its variance or width.
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Hartman, Keeler, and Kowalski [9] have proved that an RBFN employing Gaussian
hidden units of the same form of (2.14) is a universal approximator for continuous real-
valued mappings. Park and Sandberg [10] have proved that even with Gaussian hidden
units of the same variance, RBFN is still capable of universal approximation. Other
researchers have experimentally and theoretically investigated the characteristics of using

Gaussian hidden units in RBFNss (see, for instance, [11] and [12]).

22 FUZZY LOGIC SYSTEMS

In 1965, Zadeh published the first paper on a novel way of characterizing
nonprobabilistic uncertainties, which he called “fuzzy sets” [13]. This year marks the
32th anniversary of fuzzy logic and fuzzy set theory, which has now evolved into a
fruitful area containing various disciplines, such as calculus of fuzzy if-then rules, fuzzy
graphs, fuzzy interpolation, fuzzy .topology, fuzzy reasoning, fuzzy inference systems,
and fuzzy modeling. The applications, which are multi-disciplinary in nature, include
automatic control, consumer =zlectronics, signal processing, time series prediction,
information retrieval, databasz management, computer vision, data classification.
decision-making, and so on.

Fuzzy logic, which represen: the logic on which fuzzy logic controller (FLC) is based.
is much closer in spirit to human thinking and natural language than the traditional

logical systems. It provides an efective means for capturing the approximate and inexact
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nature of the real world. Generally, fuzzy control is by far the most successful application

of fuzzy sets and systems theory to practical problems.

2.2.1 BASICS OF FUZZY SET THEORY

In this section, some of the basic concepts of fuzzy set theory and fuzzy logic are

introduced briefly. A more detailed discussion may be found in [13-14].

2.2.1.1 FUZZY SETS

Let U be a collection of objects denoted generically by {u}. U is called the universe of
discourse and u represents the generic element of U.

Definition 1: Fuzzy Set: A fuzzy set F in a universe of discourse U is characterized
by a membership function pp which takes values in the interval [0,1], namely, pg
U—-[0,1]. A fuzzy set may be viewed as a generalization of the concept of an ordinary
set whose membership function only takes two values {0,1}. Thus, a fuzzy set F in U
may be represented as a set of ordered pzirs of a generic element « and its grade of
membership function: F = {(u, pAu)lul’. The higher the value of pu-(u), the more u

belongs to F.
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2.2.1.2 FUZZY SET OPERATIONS

Let 4 and B be two fuzzy sets in U with membership fumctions p, and pg,
respectively. Some of the basic set operations can be defined via their membership
functions as follows.

Definition 2: Union: The membership function of the union 4 B is defined as:

Maop =max { (), pe(ud} 2.15)

Definition 3: Intersection: The membership function of the intersection 4N B is
defined as:

K o4np =min { p(u), pg(u)} (2.16)

Definition 4: Complement: The membership function of the complement of a fuzzy
set 4 is defined as:

Ry =1-p,) 2.17)

Definition 5: Fuzzy Relation: If A and B are fuzzy sets in (" and V, respectively, a
binary fuzzy relation is a set in Ux ¥ and is defined as:

R = {((uv),nguv)) | (uv)eUx 1" (2.18)

Definition 6: Compositional Rule of Inference: Let 4 and B =e fuzzy sets in Uand V'
with membership functions of p,(«) and pg(v), respectively. A f2zzy relation R on Ux V'
has a membership function of pg(u, v) which satisfies the compc::zional rule of inference
as follows:

pa(v) = max (min{pa(u, vV).u (1)) (2.19)
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2.2.1.3 LINGUISTIC VARIABLES

A linguistic variable can be regarded as a variable whose values are defined in
linguistic terms rather than numbers. For example, let # denote the name of a linguistic
variable (e.g., speed). The values of u may be negative, zero, and positive. A linguistic
variable is usually decomposed into a set of terms, T(«), which covers its universe of
discourse as follows:

T(speed) = {negative, zero, positive} (2.20)

22.1.4 FUZZY RULES

Fuzzy rules are expressed as a collection of [F-THEN statements of the form
ifuisA and vis B then wis C (2.21)
where 4, B, and C are linguistic values of the linguistic variables u, v, and w, respectively.
Often, “u is 4 and v is B” is called the antecedent or premise while “w is C” is called the

consequence or conclusion.

Generally, fuzzy rules may be provided by human experts or can be extracted from

numerical data.
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222 FUZZY LOGIC SYSTEM STRUCTURE

In general, a fuzzy logic system that is widely used in FLCs maps crisp inputs into
crisp outputs. It comprises four principal components fuzzifier, rule base, inference
engine, and defuzzifier. Figure 2.4 depicts a configuration of a fuzzy logic system. The
fuzzy logic system components are discussed in details in what follows.

1) Fuzzifier performs the following functions:

e measuring the values of input variables,

e a scale mapping, which transfers the range of values of input variables into

corresponding universes of discourses,

o fuzzification, which converts the crisp input data into suitable linguistic values.

2) Rule base comprises a knowledge of the application domain and the control goals. It
consists of a “data base” and a “fuzzy rule base” such that

e the data base provides necessary definitions of the fuzzy rules and data

manipulation in an FLC,

e the rule base characterizes -he control goals and control policy of the domain

experts by means of a set of “inguistic control rules.
3) Inference engine is a kernel o7 an FLC. It has the capability of simulating human
decision-making based on fuz=: concepts and of inferring fuzzy control actions

employing fuzzy rules.

4) Defuzzifier performs the followiz: functions:
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* a scale mapping, which converts the range of values of output variables into
corresponding universes of discourses.
* defuzzification, which yields a nonfuzzy control action from an inferred fuzzy

control action.

2.2.3 FLC DESIGN METHODOLOGY

The design methodology of a FLC usually follows the iterative steps shown in Fig.

2.5. These steps can be summarized as follows:

1.

2.

obtain an understanding of the plant dynamics.

define the boundaries of the fuzzy universe of discourse and the number of partitions
within it.

define the membership functions of the fuzzy sets. The shapes of the membership
functions used in most studies are triangular, trapezoidal, or Gaussian functions.
decide a fuzzification and defuzzification strategies to convert real measurements to
the fuzzy domain and vice versa.

derive the control rules that form the expert knowledge of the controller. The
traditional method of obtaining these rules is a heuristic trial-and-error approach
based on analyzing process behavior. and consequent iterative modification to obtain

acceptable performance.
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Fig. 2.4 Basic configuration of fuzzy logic systems.
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Fig. 2.5 Fuzzy design methodology.
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2.24 FLC DESIGN PROBLEMS

Although they have been applied in many complex systems, FLCs experience a
deficiency in knowledge acquisition, and rely to a great extznt on empirical and heuristic
knowledge which in many cases cannot be elicited objectively. Among the problems to
be resolved in fuzzy design are the determination of the linguistic state space, the
definition of the membership grades of each linguistic term. and the derivation of control
rules. At present, the fuzzy rules and membership functions are subjectively defined by
studying a human-operated system or an existing controller and then testing the design
for proper output. If the design fails the test, fuzzy rules and membership functions
should be adjusted. Therefore, the design of the traditional fuzzy logic controller requires

a lot of trial-and-error, thus making the design a laborious aad time-consuming task.

2.3 GENETIC ALGORITHMS

Genetic algorithms (GA) are exploratory search and optimization procedures that
were devised on the principles of natural evolution and pcrulation genetics [15-17]. GA
are distinguished from other optimization techniques by e use of these principles to
guide the search. Unlike other optimization techniques. CA work with a population of
individuals represented by bit strings and modify the peri.:tion with random search and

competition. The advantages of GA over other traditiona! c-timization techniques are:
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e GA work on a coding of the parameters to be optimized, rather than the parameters
themselves.

* GA search the problem space using a population of trials representing possible
solutions to the problem, not a single point, i.e., GA have implicit parallelism. This
property ensures GA to be less susceptible to getting trapped on local minima.

¢ GA use an objective function assessment to guide the search in the problem space.

o GA use probabilistic rules to make decisions.

The basic concepts of GA are given in what follows.

23.1 GA INITIALIZATION

At first, the optimized parameters are encoded into genes as a string of binary bits.
The length of the genes and hence the length of the binary string can be calculated by
prespecifying the search space, i.e., maximum and rmmmum values of each parameter,
and the desired accuracy. The initial values of the estimated parameters are randomly
assigned. Therefore, at the beginning of the optimization process, all population are
generated as random binary strings. Each string can be evaluated by determining its
fitness which governs the extent to which an individual can influence furure generations.

Therefore, a fitness function or a performance index has to be initially deZned.
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23.2 GA OPERATIONS

In general. GA include the following operations:

Reproduction is a process in which a new generation of population is formed by
selecting the fittest individuals in the current population. This process results in
individuals with higher fitness values obtaining one or more copies in the next generation
while low fitness individuals may have none.

Crossover is the most dominant operator in GA, and is responsible for producing new
children by selecting two strings among the potential parents and exchanging portions of
their structures. The new children may replace the weaker individuals in the population.
A simple one point crossover is shown in Fig. 2.6. The crossover point is randomly
assigned by a random generator. In this way, the excellent characteristics of the parents
will be inherited in the next generation. The probability of crossover is set arbitrarily and
is typically greater or equal to 0.6 {16]. When a random number generatéd between 0 and
1 is less than the preset value of crossover probability, crossover will take place.

Mutation is a local operator which is applied with a very low probability of
occurrence. Its function is to alter the value of a random position in a string. This avoids
the loss of important information at a particular position in the string. Similar to
crossover probability. the mutation probability is set arbitrarily and is typically 0.001
[16]. When a random number generated between 0 and 1 is less than the preset value of
mutation probability, a string will be mutated. The mutation process is depicted in Fig.

2.7.



Crossover Point

Parent 1 0000000&00000000
Parent2 111111111111111

l Chid1i 0000000
Child2 1111111

Fig. 2.6 A simple crossover

110101010110001 1
1101010101101011

Fig. 2.7 Mutation step
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Inversion is a process which inverts the order of the elements between two randomly

chosen points on the string.

233 GA COMPUTATIONAL FLOW

The GA require two main stages of generation and evaluation.

Generation consists of generating an initial random population of strings representing
possible solutions in the search space.

Evaluation consists of testing the probable solutions. In order to evaluate a
population, a fitness function is defined. The fitness function serves as a focus towards
the optimal solution and is used as a basis for selecting the parents for mating that have
the greater merit. The genetic operations are systematically and repeatedly applied to the
population until an acceptable solution is found or a stopping criterion is met.

The GA computational flow is shown in Fig. 2.8.

2.4 RULE-BASED SYSTEMS

A rule-based system is a computer system that encapsuiates specialist knowledge
about a particular domain of expertise and is capable of m:zking intelligent decisions
within that domain. Rule-based systems have been appliel to different real world
problems with promising results [18]. The essential componeats of a rule-based system

are described in what follows.
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1) Rule base contains the expertise to be applied in the form of IF-THEN rules.

2) Inference engine models the process of a human expert’s reasoning in such a way
that it uses rule base to infer and take an intelligent decision.

3) Knowledge acquisition is a part in which the expert’s knowledge can be acquired.

4) Explanatory interface provides an explanation to the user why the rule-based system
is asking a question and Aow it is reaching some conclusions.

A typical rule-based system is shown in Fig. 2.9. Generally, knowledge is a scarce
and costly resource. The knowledge acquisition process is the main bottleneck in the
development of rule-based systems. The traditional way has been to closet a highly paid
domain expert with a highly paid knowledge engineer for a long period during which they
effectively negotiate a codified version of what the expert knows. This process takes time

and, obviously, money.

2.5 SUMMARY

In this chapter. the intelligent techniques have been briefly introduced. The
techniques used throughout this thesis are neural networks, fuzzy logic systems, genetic
algorithms. and rule-based systems.

In the following two chapters. the approximation capabilities of neural networks will
be exploited to approximate the nonlinear dynamics of synchronous machines. The radial
basis function network will be proposed for off-line identification in chapter 3 and for on-

line identitication in chapter 4.
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CHAPTER 3

OFF-LINE IDENTIFICATION OF SYNCHRONOUS

MACHINES

3.1 INTRODUCTION

System modeling and identification are fundamental problems in engineering where it
is often required to approximate a feal svstem with an appropriate model given a set of
input-output data. The model structure needs to have sufficient representation ability to
enable the underlying characteristics to be approximated with an acceptable accuracy. For
linear time-invariant systems, mode! structurs 21d identification problems have been wzil
studied [19-20]. Although the nonlinear zutcrazressive moving average with exogencus
variables (NARMAX) description [21] has =221 shown o0 provide a very useful unirad
representation for a wide class of ronlin2ar s-stems. nonlinear system identificatior. :s
much more complex and difficult. In zererzl. the problem of identifying a mecel

structure and its associated paramcters cac e related to the problem of learninz a
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mapping between a known input and output space. A classical framework of this problem
can be found in approximation theory.

Recently, it has been shown that feedforward neural networks with one hidden layer
can uniformly approximate any continuous function to a chosen degree of accuracy [3-5].
BPNNs have been applied to identification and control of dynamical systems [22]. A
synchronous machine has been modeled using BPNNs [23-25]. However, BPNNs have
several problems such as getting stuck in local minima and slow convergence rate [26].

On the other hand, it has recently been acknowledged that the approximation accuracy
properties of RBFN are advantageous as compared to the other methods, including
BPNNs [27-32]. Even more important for many applications, the RBFNs provide linear
approximation in the network weights. This feature makes powerful tools of the linear
system theory applicable to the RBFN identification of nonlinear systems [33]. The
“linear in parameters™ property of the radial basis functions guarantees the convergence
of the parameters to the global minimum. Moreover, the local tunability of the radial
basis functions causes only some of the nodes to be affected by any given input [27-28],
and only a portion of the model parameters may need to be adjusted, thus reducing the
training time and computational overhead. Furthermore, RBFNs are not as sensitive to

the architecture as BPNNs [34].
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3.2 PROBLEM FORMULATION

The seventh order flux linkage model of a single synchronous machine connected to
an infinite bus as shown in Fig. 3.1 is used in this study. The system model and
parameters are given in the Appendix A. The state and output equations of the
synchronous machine are described by the following nonlinear discrete model

z ((k+1)) = f (z(k), u(k)) (3.1

y (k) = g(=(k)) (G-2)
where k denotes to the kth time interval. In the above model, A.) and g(.) are the nonlinear
state and output mapping functions respectively. The input vector u(k) represents the
mechanical torque T, and the field voltage }- that is, u(k) = [T,(k), V,;(k)]T . The vector
z(k) is the state vector, that is, z(k) = 3,0, éw,.-,wp,wq,wg]r and y(k) is the output vector.
In this study, we observe two quantities: the rotor angle, 8, and the flux linkage in the d-

axis, . Hence, the output vector y(k) = [5(kLy (0)]"

3.3 THE PROPOSED IDENTIFICATION SCHEME

In the dynamical system described in (>.1) and (3.2), the nonlinear mappings are
assumed to be unknown. An RBFN is propcsed to identify these mappings. The input
vector of the RBFN identifier. x(k). is comr :sed of the current values of u(k) and z(k).

that is, x(k) = [u(k),z(k)]T . The output vecto: of the RBFN identifier is the future values



37

of the rotor angle, 8(k+/)and d-axis flux linkage, y k+/), thz is, y,[(k+1) =

[8(k+1),w£k+I)]". The proposed identification scheme is depicted in Fig. 3.2.

3.4 LEARNING ALGORITHMS

The centers of RBF units, the widths of RBF units, and the weights between the
hidden layer and the output layer represent the RBFN parameters that have to be
determined by the learning algorithm. In order to demonstrate the potential of RBFN to
identify the synchronous machine, two learning algorithms have been applied, namely,
the k-means algorithm and the orthogonal least squares (OLS) algorithm

Consider training of the RBFN shown in Fig. 1.3 to solve the approximation problem;
the network is trained to learn a target mapping t(x) : 2" — 2°. The output layer
parameters are determined using supervised learning, so we must assume having a
training set 7y = {(xl,t'), . ((x’v,tN)}. In what follows, the k-means zlgorithm and the

OLS algorithm are discussed.

3.4.1 K-MEANS LEARNING ALGORITHM

Moody and Darken [35] have proposed a simpl: and efficient lea—=irz algorithm for
RBFN. In this algorithm. the parameters of the RBF are determined :- Zree steps. First.
the RBF unit centers are determined using k-mears :lustering algorith= by prespecitying

the number of clusters which equals the number o k:dden units. m.
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Secondly, the width parameter of the ith hidden unit, o,, is chosen to be the root mean

square distance between ¢; and a number of the nearest neighboring unit centers ,z,, as

- = [1 Z(ﬂc - ¢, ml (.3)

n, 5o

Finally, the weights of the output layer are determined by considering the network

output to be equal the target value. Hence, rewriting (2.13) as

(=3 wisidl x-& D, j=1...c 3.4)

i=0

Let H denote the (m+/) x N matrix whose ith column is given by h’, the output of the
hidden layer given an input x". In matrix form, (3.4) can be rewritten as

WH=T (3.5)

where T denotes the ¢ x N matrix whose ith column is t, W = fw,w,... wc]T denotes the

cx (m+I) weight matrix of the output layer, and w; = (wjp w;;, . . ., wjm)T. Using the
orthogonal triangularization technique [20], (3.5) can be solved for W.

In this algorithm, the number of the hidden units m and the number of the nearest

neighbor centers 7, used to estimate the hidden unit width are the design parameters.

These parameters are selected after several trials to yield good performance.

3.4.2 OLS LEARNING ALGORITHM

The orthogonal least squares (OLS: algorithm [36-37] is a structural identification
algorithm. Unlike the k-means algorithm which requires a fixed network structure. the

OLS algorithm automatically determines an adequate RBFN structure during learning. By
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formulating the learning problem as a subset model selection, an OLS procedure is used
to identify appropriate RBF unit centers from the network training data, and to estimate
the network weights simultaneously. The desired property of this algorithm is that the
selection of the RBF unit centers is directly linked to the reduction in the trace of the
error covariance matrix. Although each RBF unit may have a different width, a same
width is sufficient for universal approximation [10]. Therefore, all the RBF unit widths
can be fixed to a value o, and this can simplify the training strategy.

Initially, all the training input vectors { x'},i=1I,..., N, are considered as candidates
for centers. Therefore, the initial number of centers m; is equal to N. The desired output in

(3.4) can be considered as a special case of the linear regression model

N
t(x) = z piwptex). k=1,...,¢ (3.6)

=0

where p;s are known as regressors which are fixed functions of the input vector x, i.e.,
pi=p(x), Jj=0, 1,..,N 3.7

The bias term is represented by setting p, = 1. In (3.6). ei(x) is the error between the kth

desired and network outputs which is assumed to be uncorrelated with the regressors. By

defining
e=[e ...e", i=1. .¢ (3.8)
t=(¢, ... i=1. . (3.9)
p=[p. . ..p'1 . j="...N (3.10)

then, (3.6) can be expressed as



41

Wi Woe
[t,---tI=[po-.-pPn]| S +leie] (3-11)
Wa - - W
or, more concisely, in matrix form
T=PW+E (3.12)

The OLS algorithm involves the transformation of the set of p; into a set of orthogonal
basis vectors and uses only the significant ones to form the final RBFN. In general, the
number of significant basis vectors in the final network, m, is much less than the initial
number, m,. The regression matrix P can be decomposed into

P=QA (3.13)

where A is an m x m upper triangular matrix with unity diagonal elements, that is,

1 a, . a,
0 1 . .
A= (3.14)
. M . am-lm
0 0 1

and Q is an N x m matrix with orthogonal columns q; such that

Q'Q=5 (3.15)
where S is a diagonal matrix. Using (3.13), (3.12) can be rewritten as

T=QG+E (3.16)

T2 OLS solution for (3.16) is given by
3.17)

(P2

G=S'Q'T
or

:3.18)

"

g =a't/(q a) . i=l...m j=1. .c
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The matrices G and W satisfy the triangular system
AW=G (3.19)
The classical Gram-Schmidt method [38] can be used to derive (3.19) and solve for
W. The criterion for determining the significance of candidates is the contribution of a
candidate to the trace of the desired output covariance matrix. Because the error matrix E

is orthogonal to Q, it can be shown that trace of the covariance of T is

trace(T" T/N) = 3'(3 g2)q’q, / N+ trace( E'E / N) (3.20)

Jj=t i=l

The error reduction ratio due to g, can be defined as

[errle=(3. g2)alq,/ trace(T™T) , k=1,. . .m (321)

=l
A candidate regressor is selected at the kth step if it produces the largest value of
[err]; from among the remaining candidates. The regressor selection procedure can be
summarized as follows.
* At the first step, for i = 0. . . ., N compute
QI(i)=Pi

g =a"e/(a"Ya”) i=1...c

lerrl” =Y (g,"V) @) q,” /trace( T" T)
1=1
Find

il

(err],"" = max { [err],”. i=0,... N}

and select

q= QI”U = Pu
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8= gljm) J=1...m
* Atthe kth step where k=2,..., m,fori = . Nandi=i,, ..., i#i,;, compute
a,k“)=quf/(qfq,-) J=l kel

k-1
) _
”=p—=) a4

=l

e =@ /(6 a™ L=l e

[err]," —(}: (26" )") @™ a7/ trace(T'T)
J=1
Find
lerr™ = max{[err],”, i=0..., N, i=i, ... i#i,,}
and select
@=q”

gb-:g,q-(ik), j= 1, I 1
* The procedure is terminated at the mth step when

1 =3 lerr]<p

Jj=l
where 0 < p < ] is a chosen tolerance. This gives : subset model containing m

significant regressors.

3.5 ASSESSMENT OF MODEL VALIDITY

In order to assess the validity of the proposed identifie:. three tests have been applied

as follows.



3.5.1 CORRELATION-BASED MODEL VALIDITY TEST

The adequacy of the modeling can be tested using the correlation-based model
validity tests. Define the residual vector

(k) = Y(K) - Yper (R) (3-22)

where y(k) represents the desired output vector and y,,(k) represents the network output

vector. [t can be shown [39-40] that if the identified model is operating correctly then the

following correlation tests using residuals and inputs should be satisfied:

[o=T,, ©=T 4g@®) =2,V

(3.23)
Fyle" @)= pu(®)=0, ¥z

u,e
where ¢; is the ith residual and ; is the jth input I';; and I',; are the amo-correlation and
cross-correlation functions respectively while A(f) represents the unit impulse function. In

practice, the model will be regarded as adequate if all the tests fal within the 95%

confidence bands at approximately £1.96 / </ N where VN is the number of test patterns.

3.5.2 MEAN SQUARE ERROR TEST

The model accuracy can be tested by computing the mean s;uare error (MSE)

between the desired and network outputs. Define MSE as

Y D0 - Yima (O] /(N ¢ (3.24)

=1

MSE =

A ¢
r=l

<



where c is the number of outputs.

3.53 RELIABILITY TEST

This test measures if there is enough training data in the vicinity of the test point to
reliably make a prediction. Define the maximum activation of the RBF units for a certain
test pattern, x, as

max-act=max (fi| x-¢; |), i=1...m (3.25)
where m is the number of RBF units.

A small value of max-act indicates that the test pattern is far from the training data. If
the value of max-act is below a certain threshold, e. g. < 0.5, this indicates that the model

is unreliable [12].

3.6 RESULTS AND SIMULATIONS

In order to investigate the performance of the proposed RBFN identifier, random
variation signals uniformly distributed in the range of 60-140% of the initial values of t=2
mechanical torque and field voltage have been applied. Two different sets of 109
patterns have been generated for training and testing the proposed identifier. Due to spa:2
limitations. only the first 100 patterns will be shown in the results. Initially, the machi=z
was operating at power of 1.0 pu with a 0.9 power factor lagging and a terminal voltaze

of 1.172 pu.



3.6.1 RANDOM VARIATIONS IN MECHANICAL TORQUE

A random variation in mechanical torque as shown in Fig. 3.3 has been applied. The
responses of the rotor angle and d-axis flux linkage with both learning algorithms are
shown in Figs. 3.4 and 3.5 respectively. It is worth pointing out that it is difficult to
discern a difference between the simulated and identified responses for both learning
algorithms confirming the capability of the proposed identifier to capture the nonlinear
operating characteristics of the synchronous machine. The results of the model validation
tests, as shown in Figs. 3.6 and 3.7, fall within the 95% confidence bands confirming the
adequacy of the proposed identifier trained by either k-means algorithm or OLS
algorithm. The reliability test, Fig. 3.8, shows that the maximum activation of the hidden
units for all test patterns is above the threshold indicating that the model is reliable with
both learning algorithms. A comparison between k-means learning algorithm and OLS
learning algorithm is given in Table 3.1. It can be concluded that, with approximately the
same MSE of both learning algorithms, RBFN identifier trained by OLS algorithm
produces a simpler model. On the other hand, the identifier trained by k-means algorithm
gives a more reliable model as shown in Fig. 3.8. This can be attributed to the large

number of hidden nodes in the identified model.
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Fig. 3.8 Reliability test

TABLE 3.1 Learning algorithms with random variations in T,

k-means OLS
No. of inputs 8 8
No. of hidden units 28 16
No. of outputs 2 2
MSE 5.4E-5 5.1E-3
Max. pattern error of 3 1.1E-2 1.3E-2
Max. pattern error of y 8.9E-3 1.7E-2
Min. pattern error of & 4.0E-5 8.0E-5

Min. pattern error of v 3.0E-5 2.0E-5




3.6.2 RANDOM VARIATIONS IN FIELD VOLTAGE

The performance of the proposed identifier with random variations in field voltage
shown in Fig. 3.9 was also examined. The responses of the proposed identifier are shown
in Figs. 3.10 and 3.11. It can be seen that the proposed identifier responses are very close
to the desired responses. This demonstrates the capability of the proposed identifier to
leamn the underlying characteristics of synchronous machines. The RBFN structure and
MSE with both learning algorithms are given in Table 3.2. The results show the

superiority of OLS algorithm in the sense that much less MSE and pattern errors can be

obtained.

TABLE 3.2 Learning algorithms with random variations in ¥

k-means OLS
No. of inputs 8 8
No. of hidden units 28 33
No. of outputs 2 2
MSE 8.7E-5 5.9E-5
Max. patern error of & 4.8E-2 2.3E-2
Max. patern error of yy 3.3E-2 1.8E-2
Min. pazern error of § 2.3E-5 6.0E-6
Min. pat:2m error of yy 8.0E-6 2.1E-4
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3.7 COMPARISON BETWEEN RBFN AND BPNN

To demonstrate the superiority of the proposed RBFN identifier, 2 BPNN identifier
has been developed and examined for random variations in the field voltage shown in
Fig. 3.9. The BPNN identifier was trained using the backpropagation learning algorithm
[41]. It was found after several trials that 38 hidden neurons give the minimum MSE. F 1g.
3.12 shows the BPNN training error. The structure of BPNN and MSE after 3000
iterations are given in Table 3.3. It can be shown that the MSE as well as maximum and
minimum pattern errors of BPNN identifier are higher than those of the proposed RBFN
identifier trained with either k-means or OLS leaming algorithms. This shows the
potential of the proposed RBFN identifier to accurately model the synchronous machine.
The BPNN identifier responses are given in Figs. 3.13 and 3.14. The residuals of & and
Y, for both the RBFN and BPNN identifiers are given in Figs. 3.15 and 3.16 respectively.
These figures show that the residuals in the case of the proposed RBFN identifier are
much less than those of the BPNN identifier confirming the capability of the proposed
RBFN identifier trained with either &-means or OLS learning algorithms to capture the

nonlinear characteristic of the synchronous machines.

3.8 SUMMARY

The problem of off-line identification of synchronous machines has been addressed in

this chapter. Two learning algorithms were used to train the proposed RBFN identitier.
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Model validation tests have been carried out. The results of the proposed RBFN identifier
were compared with those of BPNN identifier in the case of random variations in
machine inputs. The results reveal the potential of the proposed identifier and its
capability to capture the underlying characteristics of the synchronous machines.

Due to the attractive properties of RBFN such as linearity in the parameters, local
tunability, and fast leaming, RBFN is a good candidate to on-line applications. In the next
chapter, the problem of on-line identification of synchronous machines will be discussed

using RBFN.

TABLE 3.3 BPNN with random variations in ¥

No. of inputs 8

No. of hidden units 38

No. of outputs 2
MSE 2.6E-4
Max. pattern error of 6 5.1E-2
Max. pattern error of yy 6.0E-2
Min. pattern error of o 8.0E-5

Min. pattern error of yy 3.8E4
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CHAPTER 4

ON-LINE IDENTIFICATION OF SYNCHRONOUS

MACHINES

4.1 INTRODUCTION

Identification of non-linear systems using RBFNs has certain attractive advantages.
The general approximation capabilities of the RBFN brovides the theoretical foundation
of representing complex systems. Furthermore, the response of the RBFN is linear with
respect to its connection weights. This property guarantees the convergence of the
weights to the global minimum. Moreover, the local tunability of the RBFN reduces the
training time and computational overhead and makes the RBFN a good candidate for on-
line applications.

In this chapter. a novel on-line identification scheme is proposed. A recursive learning
algorithm has been developed to update the network parameters. The potential of the

proposed identifier is investigated using various variations in machine inputs.
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Correlation-based model validity tests have been carried out to examine the validity of

the proposed identifier.

4.2 THE PROPOSED IDENTIFICATION SCHEME

[t has been rigorously proved that a wide class of discrete-time nonlinear systems can
be represented in terms of some non-linear functional expansion of lagged inputs and
outputs as given by the following difference equation model [21]

VB =fo (Ak-1), .. ., y(k-n), u(k-1), . . ., u(k-n,) ) 4.1)
where y(k), and u(k) are the system output and input respectively; 7, and n, are the lags of
the output and input respectively; and f( . ) is some non-linear function.

Here, the aim is to use the RBFN to capture or approximate the underlying dynamics
£(.) in (4.1). Define the input vector of the network at sample £ as

v(®) = [y(k-D), . .. ylen). u(k-1), . . ., uken,) ™ (4.2)
The dimension of the input vector and consequently the dimension of the centers of the
hidden nodes is given by

n=cn,—nn, (4.3)

where ¢ and » are the number of outputs and :nputs of the network respectively. The

output vector of the RBFN identifier, ¥,.(k). be:omes the one-step-ahead predictor of
v(k), that is.

Ynedk) = £ (VIk) ) (4.4)

where £, is the network approximation ot f,.
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In this study, the activation functions, f;,, of all hidden units are of the Gaussian form
of (2.14). Thus, the ith hidden unit activation function is given by
fll x-¢; PD=exp{-05] x-¢ |¥5}}, i=1...m 4.5)
where the center c; corresponds to the mean of the Gaussian function whereas o; denotes
the width parameter.
The proposed identification scheme is depicted in Fig. 4.1, where the output of the

delay elements block is the delayed values of its input signals.
4.3 RECURSIVE LEARNING ALGORITHM

For on-line identification using RBFN, a recursive learning algorithm is required to
update the network parameters. This algorithm involves a combined form of supervised
and unsupervised learning. At each iteration, RBF centers and network weights are

updated as follows.
4.3.1 UPDATING RBF CENTERS

Given initial centers {c,(0), j =/, .. ., m} which ca= be generated randomly in the
vicinity of the input domain and an initial learning rate c 2)). the k&-means algorithm [35]
computes

p =] viB-¢k-0r |, =1 ... m (4.6)
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The updating of a center is based on how far the current input vector is away from the last
updated centers. If i = argument{min( p(k) ), j=1,..., m } then

e (k) = e(k-1) + ak) [ v(K) - e(k-1) ] “4.7)
and,

c(k) =cik-1) , Vj =i 4.8)
The learning rate a(k) €(0,1] is given by

a(k) =a(k-1)/\1+int(k / m) 4.9)

where int(x) denotes the integer part of x.

4.3.2 UPDATING NETWORK WEIGHTS

Once the centers have been updated, the outputs of the hidden layer can be calculated
using
hk) =exp {-0.5 | v()-¢®) |/ c*}, j=1...m (4.10)
and the input vector to the output layer becomes
HK=[h(K). . ... h (k)1 (4.11)
Define the m x ¢ weight matrix at sample & as
Wk)=[w, k). .. wik)... wi(k)] (4.12)
and.
wi(k)=[wy; (B). . . WaOTT (4.13)
The weighted normal equation can be written as

(ST QS W(k) =S, Q. Y, @.14)



where
Se=H'())... H'®)] (4.15)
Ye=ly(!) . . y®I (4.16)

and Q, is an k x k£ diagonal matrix defined recursively by

_{wBQ;, 0
Q<[ *E ]

J, Q=1 4.17)
p(k) is the forgetting factor and can be computed as [42-43]
HE) = po u(k-1) +1 - g 4.18)
Ko and p(0) are chosen to be less than but close to 1.
Since the least squares problem in (4.14) may become ill-conditioned, Givens

transformation method [38] has been developed to solve for W(k) rather than the direct

solution of the normal equation because of its numerical advantages.
4.4 RESULTS AND SIMULATIONS

In this study, the single machine infinite bus system shown in Fig. 3.1 is considered.
The system model and parameters are given in Appendix A.

In order to investigate the performance of the proposed RBFN identifier, two kinds of
disturbances have been applied to the machine inputs, T,, and Vg to drive the machine
and proposed identifier simultaneously. Namely. the first is a square variation in the
range of 80-120% of the initial values of the inputs. The second is a random variation

signal uniformly distributed in the range of 60-140% of the initial values of the inputs.
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Initially, the machine is operating at power of 1.0 pu with 0.85 power factor lagging and
terminal voltage of 1.0 pu. The following studies have been performed and the results of
the proposed identifier and time-domain simulations were compared to demonstrate the
adequacy of the proposed identifier. Moreover, some correlation-based model validity
tests using residuals and inputs as given in (3.23) have been carried out to show the
validity of the proposed identifier. In all cases, ten historical values of the inputs and

outputs were used to construct the input vector of the network.

4.4.1 VARIATIONS IN MECHANICAL TORQUE

The behavior of the proposed identifier due to square variation in the mechanical
torque is compared with the time-domain simulations in Figs. 4.2 and 4.3. Fig. 4.2 shows
the response of the rotor angle while Fig. 4.3 shows the response of the d-axis flux
linkage. Fig. ;4.4 shows the random variations in the mechanical torque. The responses of
the rotor angle and d-axis flux linkage due to random variation are shown in Figs. 4.5 and
4.6 respectively. It is worth pointing out that it is difficult :o discern a difference between
the simulated and identified responses confirming the capa>ility of the proposed identifier
to capture the nonlinear operating characteristics of the syrchronous machine. The results
of the model validation tests, as shown in Fig. 4.7, fall wizain the 95% confidence bands
and confirming the adequacy of the proposed identifier. T2 training error versus time is
shown in Fig. 4.8. It is clear that the training error dramat::ally converges almost to zero

in less than 0.01 sec. This demonstrates the suitability of ©he proposed identifier for on-
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line applications. It is found after several trials that only 10 neurons in the hidden laver

are adequate which makes the structure of the identifier very simple.

4.4.2 VARIATIONS IN FIELD VOLTAGE

The random variations in the field voltage is shown in Fig. 4.9. The responses of the
rotor angle and d-axis flux linkage due to random variation are shown in Figs. 4.10 and
4.11 respectively. The results demonstrate the capability of the proposed identifier to
learn the underlying characteristics of the synchronous machine. In this case, 11 neurons

in the hidden layer are found to be adequate.

4.5 SUMMARY

This chapter has provided a novel approach to on-line identification of synchronous
machines using RBFN. A learning algorithm has been developed to update the RBFN
parameters recursively. Several variations in the machine inputs have been used to test
the proposed identifier. In addition, correlation based model validity tests have been
carried out. The results show the adequacy of the proposed identifier and its capability t0
approximate the nonlinear characteristics of synchronous machines.

On the control side, the approximation capabilities of neural networks will be
exploited for on-line tuning of power system stabilizers based on real-time measuremer:s.
In the following two chapters, radial basis function networks and fuzzy basis function
networks will be proposed to re-tune the power system stabilizer parameters in real-time

without the need of on-line parameter identification.
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CHAPTER 5

ADAPTIVE TUNING OF PSSs USING RBFNs

5.1 INTRODUCTION

In the past two decades, the utilization of supplementary excitation control signals for
improving the dynamic stability of power systems has received much attention [44-63].
Nowadays, the conventional lead-lag power system stabilizer (CPSS) is widely used by
power system utilities [52]. Other types of PSS such as proportional-integral power
system stabilizer (PI PSS) and proportional-integral-derivative power system stabilizer
(PID PSS) have also been proposed [55,60]. The parameters of these stab:lizers are
determined based on the linearized model of the power system around = nominal
operating point to provide optimal performance at this point. These parametsrs remain
fixed. Therefore, the performance of the stabilizer is degraded whenever the operating

point changes from one to another.



Alternative controllers using adaptive control algorithms have been proposed to
overcome such problems [59-63]. However, most adaptive controllers are designed on the
basis of a linear model which degrades practical operation of the designed controllers.
Additionally, most of the adaptive controllers are designed based on the parameter
identification of the system model in real-time which is a time consuming task.

Recently, ANN applications to various power system problems have received much
attention [64-74]. Although ANNSs trained with backpropagation algorithm are widely
used, there are several problems associated with these networks such as getting stuck in
local minima on the error surface giving a solution that is not optimal and with a
relatively slow convergence rate, thus causing computation time for training of such
networks with large number of parameters to be very long [26-27].

In power systems, RBFN has been successfully applied to modeling of the
synchronous machines and short-term electric load forecasting problems [75-79].

However, applications of RBFN to the power system control have not yet been exploited.

5.2 PROBLEM FORMULATION

To enhance system damping, the generator is equipped with a PSS. A widely used
conventional lead-lag power system stabilizer (CPSS) is considered in this study. Thz
CPSS can be described as [2]

_ sT, Kc(1+sTl)Am
1+sT, 1+sT,

7~
n
—
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In the above equation, the time constants, T, is chosen to be large enough to prevent
any effect on phase shift or gain at the oscillating frequency while T} is chosen arbitrarily.
The other parameters, K, and T are determined by linearizing the nonlinear model of the
system around a nominal operating point to provide optimal performance at this point.
Having been determined, these parameters remain fixed. Generally, a power system is
highly nonlinear and the operating conditions can vary over a wide range. Consequently,
the operating point will change and these fixed-gain PSSs no longer ensure the optimal

performance.

5.3 DESIGN OF THE PROPOSED STABILIZER

The proposed RBFN PSS will re-tune the stabilizer parameters based on local real-
time measurements of loading conditions. The inputs to the RBFN are the real power (P)
and the reactive power (Q). The performance of the proposed RBFN PSS depends on
how it was trained. Generally, the input-output training patterns must cover most of the
working range in order to get better performance. A set of 500 training patterns was
presented to the network. The training patterns were uniformly distributed over the
working range. With each operating condition, the CPSS parameters, K, and T, are tuned
to yield the best performance at this operating point by prespecifying the desired level of
damping coefficient [2]. The CPSS parameters obtained represent the desired outputs.

The proposed RBFN was trained using the k-means algorithm developed in Chapter

3. The trained network was tested by another set of 500 input-output patterns that have
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not been presented before to the network. The average percentage error (APE) is used in

order to evaluate the performance of the trained RBFN. APE can be defined as

N
> 1d@) -y |

APE = 4=t *100 5.2

N

214 |

per
where VN is the number of testing patterns and d(i) and y(7) are the ith desired and actual
outputs respectively.
Generally, the main features of the proposed approach can be summarized as follows:
1. The proposed RBFN PSS is one of decentralized nature since only local
measurements are employed as the inputs to the stabilizer. This makes the proposed
RBFN PSS easy to tune.
2. The proposed RBFN PSS can be easily implemented on a microcomputer since it
does not require real-time model identification.

The proposed RBFN PSS control scheme is shown in Fig. 5.1.

5.4 EXAMPLE 1: SINGLE MACHINE SYSTEM

5.4.1 TEST SYSTEM

In this study. the single machine infinite bus system shown in Fig. 3.1 is considered. The

system model is given in Appendix B. For comparison , CPSS and PI PSS have been

designed based on the linearized model given in Appendix C. Several simulation studies
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Fig. 5.1 The proposed RBFN PSS control scheme.
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have been performed and the results of the proposed RBFN PSS are compared with those
of the CPSS and PI PSS. It is important to indicate that all simulations are carried out

using the nonlinear system model.

5.4.1.1 OPERATING CONDITIONS

In this study, four operating conditions are considered in order to test the proposed
RBFN PSS over a wide loading range. These conditions are listed in Table 5.1. It is worth
mentioning that these operating conditions represent a nominal, heavy, leading power

factor, and light loading conditions respectively.

TABLE 5.1 Operating conditions for example 1

Operating Conditions P (pu) Power Factor Designation
(P;. Q) 1.0 0.85 lag. nominal loading
(P;, 05) 1.3 0.85 lag. heavy loading
(P;. O3) 0.7 0.90 lead. leading PF loading

(P, Q)) 0.3 0.85 lag. light loading
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5.4.1.2 TUNING OF CPSS AND PI PSS

The state equations of the linearized incremental model of the system [2] can be

expressed as follows:

X = AX + BU (5.3)
where X =[Ao0 A8 AE, AE,]" is the state vector. Under the nominal operating
conditions specified by (P;, Q,), the matrices A and B are given by

0 -0227 -0265 0

a7 0 0 O |, B=p 0 0 so0of (5.4)

0 -0290 -0552 0.169
0 3821 -39757 =20
Without any PSS, the eigenvalues associated with the electromechanical mode lie in
the right hand side of s-plane at 0.18+,9.70 which makes a PSS highly needed to damp
out this mode. The CPSS given in (5.1) and a PI PSS given as [55]

_ T,
1+ sT,

(K, + -l%-)Am (5.5)

were designed based on the linearized model given in Appendix C. In (5.5), K, and X are
the proportional and integral gains of the PI PSS respectively. The tuned parameters of
the CPSS and the PI PSS are given in Table 5.2. These parameters were kept the same for
all simulation studies. It is observed that the eigenvalues associated with the
electromechanical mode have been moved to -2.69 +/8.68 with CPSS and -2.914,9.25

with PI PSS.
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TABLE 5.2 CPSS and PI PSS tuned parameters

PSS Type Parameters
CPSS K.=6543and T.=0.190 s
PI PSS K,=8.671 and K;=-22.530 s™
5.4.2 THE PROPOSED RBFN PSS

The proposed RBFN was trained as described above. The real power was selected
from 0.1 pu to 1.5 pu and the power factor was selected from 0.9 leading to 0.8 lagging.
It was found after several trials that the appropriate choices of the number of hidden units,
m, and the number of nearest neighbors, n,, are 38 and 15 respectively. In addition, APE

for K and T; are found to be 0.3025% and 1.0959% respectivelx.

5.4.3 SIMULATION RESULTS

5.4.3.1 OPERATING CONDITION (P, O))

To verify the behavior of the proposed RBFN PSS under tznsient conditions, a three
phase fault was applied at the infinite bus at t=1.0s for 0.1s Results of the study are
shown in Fig. 5.2. It is obvious that although the CPSS anc PI PSS parameters were
optimized at this operating condition, the proposed RBFN PSS zrovides the best damping

characteristics.
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5.4.3.2 OPERATING CONDITION (P, 0,)

A three phase fault was applied at the infinite bus at t=1.0s for 0.05s with the
generator operating at heavy loading condition specified by (P, Q,). The simulation
results of this test are shown in Fig. 5.3. The results here demonstrate the superiority of
the proposed RBFN PSS to the CPSS and PI PSS. It can be concluded that the system
with the proposed RBFN PSS returns to its previous operating point faster than the
conventional stabilizers. This is very helpful in the improvement of the disturbance

tolerance ability of the system.

5.4.3.3 Operating Condition (P; Q;)

With the leading power factor, the stability margin is reduced and it becomes very
important to test the PSS under this difficult situation. A 0.1 pu step in mechanical torque
was applied at t=1.0s while the generator was operating at (P; Q;). The simulation results
are shown in Fig. 5.4. Another test has been conducted with the generator operating at
this condition, that is, a three phase fault was applied at the infinite bus at t=1.0s. The
fault duration was 0.1s. The simulation results are shown in Fig. 5.5. It can be concluded
that the performance of the proposed RBFN PSS is much better than those of the CPSS

and PI PSS and the oscillations are damped out much quicker.
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5.4.3.4 Operating Condition (P, Q,)

At light loading condition (P, Q,), a local load of admittance of 0.3 - 0.2 pu has
been switched on at t=1.0s. The simulation results are shown in Fig. 5.6. It is seen that the

proposed RBFN PSS provides better damping characteristics.
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5.5 EXAMPLE 2: MULTIMACHINE POWER SYSTEM
- 5.5.1 TEST SYSTEM AND OPTIMUM PSS LOCATIONS

To evaluate the effectiveness of the proposed RBFN PSS, the nine-bus three-machine
power system shown in Fig. 5.7 was considered [1]. Details of the system model and
parameters are given in Appendix D. Without PSSs, the system response curves due to a
6-cycle three phase fault at bus 7 at the end of line 5-7 are shown in Fig. 5.8. It is
observed from Fig. 5.8 that the system damping is poor and the system is highly
oscillatory. Therefore, it is necessary to install stabilizers in order to have good dynamic
performance. To identify the optimum locations of PSSs, the participation factor method
[80] and the sensitivity of PSS effect (SPE) method [81] were used. The results of both
methods indicate that the generators G2 and G3 are the optimum locations for installing
PSSs to damp out the electromechanical modes of oscillations. Therefore, the generators
G2 and G3 were equipped with two of the proposed RBFN PSS. The performance of the
proposed stabilizers was compared to ttat of CPSSs installed on G2 and G3 with the

transfer function [1]

Gy 105 (+ 0.5685)>

- 2 (56)
L+10s (1+ 0.0227s)>

To demonstrate the capability of th: proposed RBFN PSS to enhance the system

damping over a wide range of operating conditions, three different loading conditions
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were considered as given in Table. 5.3. Load admittances in each case are given in Table

5.4.

TABLE 5.3 Operating conditions for example 2

Generator Nominal Heavy Light
Puy Q@Ew Py Q@Ew PrEw Q(puw
Gl 0.713 0.275 2.207 1.092 0.362 0.166
G2 1.63 0.068 1.920 0.565 0.800  -0.107
G3 0.852  -0.108 1.280 0.360 0.450  -0.203

TABLE 5.4 Load admittances for example 2

Load Nominal Heavy Light
A 1.261-j0.504 2.314-j0.923 0.640-j0.542
B 0.878-j0.293 2.032-j0.677 0.431-j0.335

C 0.969-0.339 1.584-j0.634 0.472-j0.236
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5.5.2 THE PROPOSED RBFN PSSs

Two RBFNs are proposed to re-tune the stabilizers installed on G2 and G3. The
proposed networks were trained using k-means algorithm. The purpose of the training in
this paper is to make the proposed RBFN able to update the values of K and T;
parameters based on real-time measurements of the ith machine loading conditions. To
generate the training patterns, the load admittances have been randomly varied in the
range of 0.5 to 2.0 of their nominal values. With each variation, the load flow solution of
the system is obtained and the CPSS is designed by linearizing the system model around
the current operating point. Therefore, each training pattern consists of the real power P,
and the reactive power Q; as the network inputs and the parameters K; and T; as the
desired outputs. A computational flow chart of the training and testing procedure is
shown in Fig. 5.9.

Each RBFN was trained_ using a set of 500 input-output patterns. The trained
networks were tested by another set of 500 input-output patterns. The errors APE and the

structure of the networks are given in Table 5.5.

TABLE 5.5 APE and RBFN structures

Generator APE RBFN Structure
K. T, m n,
G2 0.020 0.026 25 6

G3 0.031 0.028 25 6
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5.5.3 RESULTS AND SIMULATIONS

With each loading condition described above, a three phase fault at bus 7 was applied.
The fault duration was 6 cycles. It is worth pointing out that all time simulations have
been carried out using the nonlinear model of the system. The simulation results are

shown as follows.

5.5.3.1 NOMINAL LOADING CONDITION

The system response is shown in Fig. 5.10. It is obvious that with the proposed RBFN
PSSs, the system returns to its previous operating point fzster than the CPSSs. This is

very helpful in the improvement of the disturbance tolerance ability of the system.

5.5.3.2 HEAVY LOADING CONDITION

It may become necessary to operate the power system with heavy loading conditions.
Accordingly, it becomes very important to test the PSS undzr this difficult situation. The
simulation results are shown in Fig. 5.11. The results herz show the superiority of the
proposed RBFN PSSs to the CPSSs. It can be concluded tzat the proposed RBFN PSS

provides very good damping over a wide range of operating :onditions.
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5.5.3.3 LIGHT LOADING CONDITION

The simulation results are shown in Fig. 5.12. It can be seen that the proposed RBFN
PSSs produce much better results and the oscillations are damped out much quicker as

compared to CPSSs.

5.6 SUMMARY

This chapter presents a novel technique for on-line tuning of PSSs. The proposed
technique overcomes the major problem of the adaptive stabilizers which is the necessity
of on-line parameter identification. The proposed RBFN PSS was trained over a wide
range of operating conditions. The proposed strategy has been applied to a single machine
infinite bus system and to a multimachine system. The results show that the system
performance with the proﬁosed stabilizer is greatly improved and the oscillations are
damped out much faster than conventional stabilizers. The major features of the proposed
stabilizer are the fact that it is easy to tune and to implement.

To overcome the weaknesses of neural networks and fuzzy logic systems ind to
combine their strengths, fuzzy basis function network based power system stabilizer will

be proposed in the next chapter.
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CHAPTER 6

HYBRID NEURO-FUZZY POWER SYSTEM STABILIZERS

6.1 INTRODUCTION

Recently, many intelligent system techniques have been developed and introduced
such as neural networks (NN) and fuzzy logic systems (FLS). Unlike the most
conventional methods, an explicit mathematical model of the system dynamics is not
required to design a controller using NN and/or FLS. NN and FLS have been successfully
applied to various power system control problems with promising results. A neural
network that mimic the function of the brain has a large number of massively
interconnected processing elements (nodes) that demonstrate the ability to learn and
generalize from training examples. Distributed representation and learning capabilities
are the major features of NN. Since the NN are nonlinear in the parameters [64-68], the

backpropagation training algorithm is commonly used to estimate the network
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parameters. However, there are several problems associzzed with these networks such as
getting stuck in local minima and slow convergence rate.

On the other hand, FLS base their decisions on tputs in the form of linguistic
variables derived from membership functions which are used to determine the fuzzy set
to which a crisp value of the input belongs and the degres of membership in that set. The
variables are then matched with the preconditions of lingmistic [F-THEN rules and the
response of each rule is obtained through fuzzy implicaton. The response of each rule is
weighted according to the degree of membership of its inputs. Finally, the centroid of
responses is calculated to generate the appropriate output. Although fuzzy logic
controllers showed promising results [82-95], they are su3jective and somewhat heuristic.
In addition, the determination of fuzzy rules and the caoice of membership functions
depend on trial-and-error which, in turn, makes the design of fuzzy logic controller a
time-consuming task.

In power systems, because of the nature of varicis problems, different types of
solutions may be required. The recent direction to deal with these problems is to integrate
the use of NN and FLS in order to combine their differeat strengths and overcome each
other’s weaknesses [96-101]. In this chapter, we propos: a fuzzy basis function network
based power system stabilizer (FBFN PSS) which bring: the learning capabilities of NN
to FLS. The proposed RBFN is trained to adapt the para—eters of PSS based on real-time

measurements.

The main features of the proposed FBFN PSS can be summarized as follows:
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1. The proposed FBFN PSS is of a decentralized output feedback form since only local
measurements are employed as the inputs to each stabilizer. This makes the proposed
FBFN PSS easy to tune.

2. The proposed FBFN PSS can be easily implemented on a microcomputer since it does
not require real-time model identification.

3. The proposed FBFN PSS incorporates the linguistic and numerical information in a

uniform fashion and combines the strengths of NN and FLS.
6.2 FUZZY BASIS FUNCTION NETWORK

The problem that can be raised in the training of neural networks is that the test inputs
used to generate the input-output pairs may not be rich enough to excite all modes of the
system [97]. In this case, using neural networks only to design the stabilizer may be
neither sufficient nor effective. '

On the other hand, the major difficulty in the design of a traditional fuzzy logic
controller is the determination of the fuzzy rules and the associated input/output
membership functions. At present, the fuzzy rules and membership functions are
subjectively defined by studying a human-operated system or an existing controller and
then testing the design for proper output. If the design fails the test, fuzzy rules and
membership functions should be adjusted. Therefore, the design of the traditional fuzzy
logic controller requires a lot of trial-and-error, thus making the design a time-consuming

task. However, the linguistic rules are very important and often contain information
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which is not contained in the input-output pairs used to train neural networks. The
proposed FBFN combines the strengths of both FLS and NN.

Like the feedforward networks, the proposed FBFN has four layers as shown in Fig.
6.1. It is worth noting that Fig. 6.1 shows the initial network structure where the number
of fuzzy rules, M, is equal to the number of training patterns, N, whereas the final
structure is much simpler. In what follows, we will denote the output of the ith node in
the kth layer by 0,-". The proposed network structure with » inputs and m outputs can be
described as follows:

Layer 1: For the ith input, every node in this layer computes the degree of
membership of the input. Every node ; has a function of

Of=p, (), j=L2,...., M 6.1
where p; (x) is a Gaussian membership function associated with the ith input and jth

rule. It can be expressed as

1 % —C,
u,-,(x,-)=eXp(—5(———~) ) (6.2)

ij
where ¢; and o ; are the mean and the variance of the jth function.
Layer 2: Every node in this layer multiplies the incoming signals and sends the
product out, i.e.,
o/ = [ ms(x) .j=L2....M (6.3)

Basically, each node output represents the firing strength of a fuzzy rule.






100

Layer 3: Every node in this layer calculates the ratio of the jth rule’s firing strength to

the sum of all rules’ firing strengths, i.e.,

i i \X;
O’ = H,.,P 1 (%1) J=12, ... .M (6.4)

i M
ZI-[,-',[“!’,‘(xi)

J=l

In other words, nodes in this layer compute the normalized firing strength of each
rule. In fact, the output of each node in this layer represents a fuzzy basis function, p{x),
that is,

p =07  j=12....M (6.5)
wherex =[x, ... ,x,,]r is the input vector.

Layer 4: In this layer each node represents an output and linearly combines the fuzzy

basis functions as

y :
0f =)p;(x®,;  k=12,....m (6.6)

J=l

where 0 , is the weight between the jth node in layer 3 and the kth node in layer 4.

6.3 THE PROPOSED FBFN TRAINING

The objectives of the training are to construct an adequzte and parsimonious model of
the network, to select a set of appropriate means, c;s, of the membership functions, and to
estimate the weights, 8;s, between layer 3 and layer 2. Although each membership

function may have a different variance, c;;, a same varizace is sufficient for universal
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approximation [37,97]. All the variances in the network can therefore be fixed to a value
c, and this can simplify the training strategy. Initially, all the training patterns are
considered as candidates for centers. Therefore, the initial number of centers M is equal to
the number of training patterns V.

Since FBFN is linear in the parameters, the OLS learning algorithm developed in
Chapter 3 is used to determine a set of significant fuzzy basis functions and the network
parameters. The OLS learning algorithm requires only one pass of the training examples,
therefore, it is much faster than backpropagation algorithm. Moreover, the OLS algorithm
is a linear optimization technique, hence, it guarantees the convergence of the network
parameters to the global minimum. While most of the learning algorithms require a
prespecified network structure, the OLS algorithm provides a systematic approach to the
selection of FBFN structure in an intelligent way in the sense that an adequate and

parsimounious structure is self-organized.

6.4 DESIGN OF THE PROPOSED FBFN PSS

The proposed FBFN PSS is used to re-tune the parameters of the CPSS described in
(5.1) based on local real-time measurements of loading conditions. The inputs to the
FBFN are the real power (P) and the reactive power (Q). A set of 500 training patteras
was presented to the network. The training patterns were uniformly distributed over the

specified range. For each operating condition, the CPSS parameters, K, and T}, are tuned
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to yield the best performance at this operating point by prespecifying the damping
coefficient [2]. The CPSS parameters obtained represent the desired outputs.

The trained network was tested by another set of 500 input-output patterns that have
not been presented before to the network. The average percentage error (APE) described
in (5.2) is used in order to evaluate the performance of the trained FBFN.

The proposed FBFN PSS control scheme is shown in Fig. 6.2.

6.5 EXAMPLE 1: SINGLE MACHINE SYSTEM

6.5.1 TEST SYSTEM

In this study, the single machine infinite bus system shown in Fig. 3.1 is considered.
The system model and parameters are given in the Appendix B. In order to investigate the
performance of the probosed FBFN PSS, CPSS and PI PSS have been designed as
described in Chapter 5. A number of studies have been performed and the results of time
domain simulations of the proposed FBFN PSS are compared with those of the CPSS and
PI PSS. All time domain simulations are carried out using the nonlinear model of the
system.

In this study, the same operating conditions given in Table 5.1 are considered in order

to test the proposed FBFN PSS over 2 wide loading range.
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6.5.2 THE PROPOSED FBFN PSS

The proposed FBFN was trained as described above. To cover a wide renge of
loading conditions, P is ranging from 0.1 pu to 1.5 pu and the power factor is ranging
from 0.9 leading to 0.8 lagging. Out of the training patterns presented to the network, a
set of 41 patterns was selected by the OLS algorithm to represent the significart fazzy

basis functions. In addition, APE for X and 7, are found to be 0.3546% and 0.9290%

respectively.

6.5.3 SIMULATION RESULTS

6.5.3.1 OPERATING CONDITION (P, Q))

A three phase fault was applied at t=1.0s at the infinite bus for a duration of O.1s.
Results of the study are shown in Fig. 6.3. It is obvious that although the CPSS and PI
PSS parameters were optimized at this operating condition, the proposed FBFN PSS

provides the best damping characteristics.

6.5.3.2 OPERATING CONDITION (P Q>)

AY

A three phase fault was applied at the infinite bus for 0.05s with the gsnerator

operating at the heavy loading condition specified by (P; Q). The simulation results of
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this test are shown in Fig. 6.4. It can be concluded that the system with the proposed
FBFN PSS returns to its previous operating point faster than the conventional and
proportional-integral stabilizers. This improves the disturbance tolerance ability of the

system.

6.5.3.3 OPERATING CONDITION (P;, 0;)

A 10% step in mechanical torque was applied at t=1.0s while the generator is
operating at (P;, O;). The simulation results are shown in Fig. 6.5. Another test has also
been conducted with the generator operating at this condition, that is, a three phase fault
was applied at t=1.0s at the infinite bus for a duration of 0.1s. The simulation results are
shown in Fig. 6.6. It is clear that the performance of the proposed FBFN PSS is superior

to those of the CPSS and PI PSS and the oscillations are damped out much quicker.

6.5.3.4 OPERATING CONDITION (2,, 0,)

At the light loading condition (P, Q,), a local load of admittance of 0.3 - 0.2 pu has

been switched on at t=1.0s. The simulation results are shown in Fig. 6.7. It is seen that the

proposed FBFN PSS provides better damping characteristics.
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Fig. 6.7 Response to switching on a local load with loading of (P,Q,)
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6.6 EXAMPLE 2: MULTIMACHINE SYSTEM

6.6.1 TEST SYSTEM

The nine-bus three-machine power systezx shown in Fig. 5.7 is considered. Details of
the system model and parameters are given in Appendix D. Without PSSs, the system
response curves due to a 6-cycle three phase Zault at bus 7 at the end of line 5-7 are shown
in Fig. 5.8. As described in Chapter 5, the system damping is poor and the system is
highly oscillatory. Therefore, it is necessary to install stabilizers in order to have good
dynamic performance. It was mentioned in Chapter 5 that the generators G2 and G3 are
the optimum locations for installing PSSs 1w damp out the electromechanical modes of
oscillations. Therefore, the generators G2 ard G3 are equipped with two of the proposed
FBFN PSS. The performance of the proposed stabilizers was compared to that of CPSSs
installed on G2 and G3 with the transfer funcsion given by (5.6)

To demonstrate the capability of the prorosed FBFN PSS to enhance system damping
over a wide range of operating conditiozs, the same loading conditions and load

admittances given in Tables 5.3 and 5.4 were considered respectively.

6.6.2 THE PROPOSED FBFN PSSs

Two FBFNs are proposed to re-tune tie stabilizers installed on G2 and G3. The

proposed networks were trained using OLS algorithm. The training patterns were
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generated as shown in Fig. 5.9. Each training pattern consists of the real power P; and the
reactive power (; to represent the network inputs and the values of K; and T; to
represent the desired outputs.

Each FBFN was trained using a set of 500 input-output patterns. The trained networks
were tested by another set of 500 input-output patterns. The errors APE and the number

of significant fuzzy basis functions selected by OLS algorithm are given in Table 6.1.

6.6.3 RESULTS AND SIMULATIONS

With each loading condition, a three phase fault disturbance at bus 7 was applied. The

fault duration was 6 cycles. The simulation results are shown as follows.

6.6.3.1 NOMINAL LOADING CONDITION

The dynamic response of the system is shown in Fig. 6.8. It is obvious that the

proposed FBFN PSSs provide good damping characteristics since tte speed deviations

with the proposed stabilizers show smaller settling times than those of CPSSs.

6.6.3.2 HEAVY LOADING CONDITION

The simulation results are shown in Fig. 6.9. The results here shc'v the superiority of

the proposed FBFN PSSs to the CPSSs in the sense that the speed ézviations of all units
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are significantly reduced. It can be concluded that the proposed FBFN PSS provides very

good damping over a wide range of operating conditions.

6.6.3.3 LIGHT LOADING CONDITION

The simulation results are shown in Fig. 6.10. It can be seen that the system

performance with the proposed FBFN PSSs is much better and the oscillations are

damped out much quicker as compared to CPSSs.

TABLE 6.1 APE and FBFN structures

Generator APE Significant FBF
K. T,
G2 0.027 0.017 33
G3 0.030 0.016 20
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6.7 A COMPARISON BETWEEN FBFN AND RBFN

The RBFN proposed in Chapter 5 and the FBFN proposed in Chapter 6 were trained
by a set of 500 training patterns uniformly distributed over the input space. The
simulation results using RBFN and FBFN emphasize the fact that given a sufficient
number of training patterns, both networks can successfully tune the PSS parameters
based on real-time measurements of loading conditions.

In this section, the performance of each network is reexamined in the case of
insufficient number of training patterns. Therefore, each network is retrained using a set
of 50 training patterns only. In addition, OLS algorithm is used to train both networks.
The number of hidden units selected by OLS algorithm for both systems considered in
examples 1 and 2 are given in Table 6.2.

For the sake of comparison, two performance indices are considered, namely, the

integral of squared time multiplied by square error wilich can be defined as
J, = ]'tzAco 2(t) dt 6.7)
0
and the integral of the square of the error which can be defined as
Jy= T[Am *(8) dt (6.8)
0

The trained newvorks have been used to tune the PSS parameters for the same
operating conditions described in examples 1 and 2. The simulation resuts for 0.1s three

phase fault with the nominal operating condition of examples 1 are shown in Fig. 6.11.
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Fig. 6.12 shows the simulation results of a 6-cycle three phase fault at bus 7 with the
nominal operating condition of example 2. It can be seen that the system performance
with FBFN is much better and the oscillations are damped out in both cases of single
machine and multimachine systems. The values of J; and J, for different loading
conditions of systems considered in examples 1 and 2 are given in Tables 6.3 and 6.4
respectively. It is obvious that the values of performance indices J; and J, with FBFN are
much less. It can be concluded that the control performance of the FBFN PSS is much
better than that of RBFN PSS in the case of 50 training patterns which represent an
insufficient number of the training patterns. This can be attributed to the robustness of the

fuzzy logic concepts embedded in FBFN structure.

6.8 SUMMARY

In this chapter, an FBFN PSS has been proposed. The proposed stabilizer overcomes
the problems that can be raised in neural network training and fuzzy logic controller
design. In addition, the proposed stabilizer incorporates the fuzzy logic concepts with a
radial basis function network structure in a uniform fashion. The proposed stabilizer has
been tested in a single machine infinite bus system and in a multimachine power system
environments. The results show the sureriority of the proposed stabilizer over
conventional stabilizers. A comparison betwsen RBFN and FBFN in case of insufficient

number of training patterns reveals the robusmess property of the proposed FBEN.
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In the remaining chapters, genetic algorithms will be incorporated in the design of
conventional PSSs in chapter 7, rule-based PSSs in chapter 8, and fuzzy logic PSSs in
chapter 9. Incorporating GA in the design process will add an intelligent dimension to
these stabilizers and reduce significantly the time consumed to search for optimal settings

of the stabilizer parameters.

TABLE 6.2 Hidden units for reduced number of training pattems

Network Example 1 Example 2
Type G2 G3
FBFN 20 20 18

RBFN 20 17 15
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TABLE 6.3 Comparison between FBFN and RBFN for example 1
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Loading _ Fault Time 7, 7
condition (ms) FBFN RBFN FBFN RBFN
P, Q, 100 2.0010 6.6041 0.4955 0.8529
P,, Q, 50 0.5135 4.6413 0.1278 0.4925
P;, Q, 120 3.1397 6.7476 0.7533 0.9106
P, Q, 150 5.8131 6.9937 1.3090 1.4752

TABLE 6.4 Comparison between FBFN and RBFN for example 2

Loading Fault Time J; J,

Condition (ms) FBFN RBFN FBFN RBFN

Nominal 100 1.1622 397.42 1.0733 21.462
Heavy 100 1.2543 437.72 1.1969 22.536

Light 100 0.0830 189.70 0.1806 9.5615
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CHAPTER7

GENETIC-BASED POWER SYSTEM STABILIZERS

7.1 INTRODUCTION

Genetic algorithms (GA) are search algorithms based on the mechanics of natural
selection and survival-of-the-fittest. One of the most important features of the GA as a
method of control system design is the fact that minimal knowledge of the plant under
investigation is required. Since the GA optimize a performance index based on
input/output relationships only, far less information than other design techniques is
needed. Further, because the GA search is directed towards increasing a specified
performance, the net result is a controller which titimately meets the performance
criteria. In addition, because derivative information is a0t needed in the execution of the
algorithm, many pitfalls that gradient search methocs suffer can be overcome. Finally,
because the GA do not need an explicit mathematical relationship between the

performance of the system and the search updatz. the GA offer a more general
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optimization methodology than conventional analytical techniques. Recently, GA have
been successfully applied to various power system problems [102-107].

This chapter introduces the application of GA to the design of power system
stabilizers. At first the design problem is transformed into an optimization problem which
is then solved using GA. This approach is successfully applied to search for the optimal
settings of PSS parameters. The simulation results show that the proposed genetic-based
power system siabilizer (GPSS) can improve the dynamic performance of power systems

over a wide range of operating conditions and system parameter variations.
7.2 PROBLEM FORMULATION

Before the GA are employed for design purposes, it is necessary to carry out coding,
selecting an initial population, and adopting a performance index. In this study, the PSS
parameters a.re coded in a binary string and the initial population is randomly generated.
A simple performance index that promotes small steady state errors and small overshoots
and oscillations is given by

N @
J=Y [tao @) 1)
i=l =0
where Ao, represents the ith machine speed deviation and NM represents the total nurr-er
of machines.

The commonly used lead-lag type of PSS with speed deviation as its input is chcsen

in this study. Let the transfer function of each local stabilizer be
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U, 1+ 5T,

——=K,[

Ao, % 1+sT,

1” (12)

where U, and Aw; are the output and input of the ith stabilizer. The order of each PSS
and its lag time, i.e., p; and T; are usually prespecified [53]. In this study, p; and T; are
assumed to be 1 and 0.1s respectively. Thus, K; and T; are the parameters which remain
to be determined. The proposed approach is to use GA to select these parameters so as to
minimize the performance index Jin (7.1).

The particular choices of population size, number of generations, crossover
probability, and mutation probability are generally problem dependent. However, GA
perform better with relatively high crossover probability, small mutation probability, and
moderate population size [17].

Applying GA to the problem of PSS design involves repetitively performing the
following two basic steps:

1. The performance index value must be calculated for each of the strings in the current
population. To do this, the PSS parameters must be decoded from each string in the
population and the system simulated to obtain the performance index value.

2. GA operations are applied to produce the next generation of the strings.

These two steps are repeated Tom generation to generation until the population has

converged. The computational flov of the problem can be shown in Fig. 7.1.
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73 EXAMPLE 1: SINGLE MACHINE SYSTEM

7.3.1 TEST SYSTEM

In this study, the single machine infinite bus system shown in Fig. 3.1 is considered.
The system model and parameters are given in Appendix B. In order 0 investigate the
performance of the proposed GPSS, a CPSS has been designed as described in Chapter 5
and a number of studies have been performed. All time domain simulations are carried

out using the nonlinear model of the system.
7.3.2 THE PROPOSED GPSS

To design the proposed GPSS, K and T are coded in a binary string with a length of
14 bits. The first 7 bits represent K while the remaining bits represeﬁt T-. GA are applied
to find the optimal values of these parameters to minimize the performance index in (7.1).
The initial population is generated randomly. Population size, maxnum number of
generations, and crossover and mutation probabilities are selected afte: many trials to be
50, 50, 0.75, and 0.001 respectively. It is found that the optimal values of K, and T are
11.24989 and 0.14094 respectively. Fig. 7.2 shows the variations c: the performance

index with the number of generations.
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7.3.3 SIMULATION RESULTS

To investigate the performance of the proposed GPSS, the following simulation

studies have been carried out using the nonlinear model of the system.

7.3.3.1 NOMINAL LOAD TEST

Under the nominal operating conditions specified by P=1.0 pu with 0.85 power factor
lagging, a 0.1 pu step increase in mechanical torque was applied at time 1.0 s. The results
of this study are shown in Fig. 7.3. It can be seen that GPSS damps out the low frequency
oscillations very quickly. The first swing in the torque angle is significantly suppressed
which means increasing of stability ﬁ1argin.

Next, a 10% reduction of reference voltage was applied at t=1.0s and removed at

t=3.0s. The simulation results are shown in Fig. 7.4. It is clear that the oscillations with

GPSS are damped out very quickly .

7.3.3.2 LIGHT LOAD TEST

In this case, the generator operates at a light load condition specified by a power of
0.3 pu with a 0.85 lagging. A 0.4 pu step increase in mechanical torque was applied at
t=1.0 s. The results are shown in Fig. 7.5. It can be seen that the GPSS produces much

better results and the oscillations are damped out much quicker compared with the CPSS.
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This means that the GPSS can provide very good damping over a wide range of operating
conditions.

Next, a three phase fault at the generator terminals was applied at t=1.0 s for 130 ms.
Fig. 7.6 shows the simulation results of this study. It can be seen that the proposed GPSS
minimizes the deviations and improves the system settling time. This is very helpful in

the improvement of the disturbance tolerance ability of the system.

7.3.3.3 LEADING POWER FACTOR OPERATION TEST

A 0.4 pu step increase in mechanical torque was applied at t=1.0s while the generator
operating at a power of 0.4 pu with a 0.95 power factor leading. The simulation results
are shown in Fig. 7.7. It can be concluded thar the performance of the GPSS is much
better and the oscillations are damped out much quicker.

Another test has been conducted with the gererator operating at this condition. That is
a local load of admittance of 0.2 - 0.1 pu has been switched on at t=1.0s. The simulation
results are shown in Fig. 7.8. It is seen that the proposed GPSS provides better damping

characteristics than CPSS.
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7.4 EXAMPLE 2: MULTIMACHINE SYSTEM

7.4.1 TEST SYSTEM

The nine-bus three-machine power system shown in Fig. 5.7 is considered. Details of
the system model and parameters are given in Appendix D. It was found earlier in
Chapter 5 that the generators G2 and G3 are the optimum locations for installing PSSs to
damp out the electromechanical modes of oscillations. Therefore, the generators G2 and
G3 are equipped with two of the proposed GPSS. The performance of the proposed
stabilizers was compared to that of CPSSs installed on G2 and G5 with the transfer
function given by (5.6)

To demonstrate the capability of the proposed GPSS to enhance system damping over
a wide range of operating conditions, the same loading conditions and load admittances

given in Tables 5.3 and 5.4 were considered respectively.
7.4.2 THE PROPOSED GPSSs

Two GPSSs are installed on G2 and G3. There are four parametz:s to be optimized,
K, and T}, . i=2,3. These parameters are coded in a binary string witk: ‘ength of 28 bits, 7
bits for each. GA are applied to find the optimal values of these parzmeters to minimize
the performance index in (7.1). The initial population is generated ra=domly. Population

size, maximum number of generations. and crossover and mutatiza probabilities are
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selected after several trials to be 40, 50, 0.75, and 0.001 respectively. The optimal values

of K; and T}; are given in Table 7.1. Fig. 7.9 shows the variations of performance index.

7.43 RESULTS AND SIMULATIONS

With each loading condition described in Table 5.3, a three phase fault disturbance at

bus 7 was applied. The fault duration was 6 cycles. The simulation results are as follows.

7.4.3.1 NOMINAL LOADING CONDITION

The system response is shown in Fig. 7.10. It is obvious that with the proposed

GPSSs, the system returns to its previous operating point much faster than the CPSSs.

7.4.3.2 HEAVY LOADING CONDITION

The simulation results are shown in Fig. 7.11. The results show that the proposed
GPSS provides very good damping characteristics over a wide range of operating

corditions.

7.4.3.3 LIGHT LOADING CONDITION

The simulation results are shown in Fig. 7.12. It can be seen that the proposed GPSSs
prc-iuce much better results and the oscillations are damped out much quicker as

cozpared to CPSSs.
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TABLE 7.1 The proposed GPSS parameters for example 2

Generator GPSS Parameters
G2 5.9491 0.4540
G3 3.7182 0.3444
4E4 —
3.6E4 —
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e e L L
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Fig. 7.9 Performance index variations for example 2
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7.5 COORDINATION BETWEEN GPSS AND CPSS

In most situations, the newly PSSs may replace a part of the existing stabilizers. In
this case, the newly installed GPSSs will have to work together with CPSSs which
already exist in a power system. In this section, system response with the proposed
GPSSs and CPSSs working together has been also investigated. For the three-machine
nine-bus system considered in example 2, the proposed GPSS was installed on G2 with a
CPSS set on G3. The system response to a 6-cycle three phase fault at bus 7 for different
loading conditions is shown in Fig. 7.13. It can be seen that the two types of PSSs can
work cooperatively. The response with the proposed GPSS and CPSS combination is
better than the response with only CPSSs on G2 and G3 in the corresponcing Figs. 7.10-

a, 7.11-a, and 7.12-a.

7.6 SUMMARY

In this chapter, GA has been used to search for optimal parameter settings of
conventional lead-lag PSSs. The proposed approach avoids the linearization process
required to design such stabilizers. T=e proposed GPSS has been tested in a single
machine and in a multimachine powe:- system environments. The coordination of the
proposed GPSS with the existing CPSS has been afso discussed. The results show that the
system performance with the propose¢ GPSS is greatly improved and the low frequency
oscillations are damped out much quicxer than CPSSs. In addition. the proposed GPSS

can operate cooperatively with the exiszng conventional control schemes.

=
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It has been acknowledged that the damping characteristics of rule-based PSSs are
much better than those of fixed-parameter stabilizers. However, the design process of
these stabilizers is a time-consuming task since their parameters are optimized iteratively.
To alleviate such problems of the traditional rule-based stabilizers design. GA will be

incorporated in the design process of these stabilizers in the next chapter.
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CHAPTER 8

HYBRID GENETIC RULE-BASED PSSs

8.1 INTRODUCTION

Recently, rule-based power system stabilizers (RBPSSs) have been proposed and
investigated [108-109]. RBPSSs appear to be suitable stabilizers due to their lower
computation burden and robustness. Unlike the most conventional methods, an explicit
mathematical model of the system dynamics is not required to design a good RBPSS
which makes it more suitable for on-line computer control. In addition, RBPSSs can be
easily set up and implemented using a microcomputer with A/D and D/A converters
[108-109].

Although RBPSSs showed promising results, they are subjective and somewhat
heuristic. In addition, their parameter settings are done either iteratively, by trial-and-
error, or by human experts. That makes the design of such stabilizers a laborious and

time-consuming task.
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In this chapter, we propose an approach to integrate the use of GA and rule-based
systems in order to combine their different strengths, overcome the difficulties in
RBPSSs design, and efficiently tune the control rules. The proposed genetic based
RBPSS (GRBPSS) show that the performance of the RBPSS can be improved

significantly by incorporating a genetic-based optimizing mechanism.
8.2 DESIGN OF RULE-BASED STABILIZERS

The supplementary stabilizing signal « is added to the excitation loop as shown in
Fig. 8.1. At time ¢, the stabilizing signal u(r) is given by
u(f) = U(k) kT <t<(k+1)T (8.1)
where k is an integer and T is the sampling period. The value of U(k) is determined at
each sampling time based on the operating state. At time k7, the operating state is
specified by speed deviation Aw(k) and acceleration A(k) where ‘
AK)=[Ao(k) - Ao(k-1)]/T 8.2)
The operating state is given by the point z(k) in the phase plane as shown in Fig. 8.2,
where
z(k) = (A (k) , A(K) ) (8.3)
Define R(k) and a(k) as

Rk = =(k)| 3.4
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and,
a(k) =tan™ (4(k) / Ao(k)) (83)
The phase plane is divided into six sectors by three switching lines L), L,, and L; as

shown in Fig. 8.2. Each sector has its own control rule as follows [108]:

Rule 1: If z(k) € sector A, then U(k) = G(A)Upx (8.6)
Rule 2: If z(k) € sector B, then U(k) = G(k)Up;n 8.7
Rule 3: If z(k) e sector C, then U(k) = ~G(k) Uppin (8.8)
Rule 4: If z(k) e sector D, then U(k) = ~G(R) U (8.9)
Rule 5: If z(k) e sector E, then U(k) = ~G(k)Upin (8.10)
Rule 6: If z(k) € sector F, then U(k) = G(K)U,pp (8.11)

where U, and U, are the maximum and minimum values of the control signal

respectively. G(k) is the gain factor which is given by a nonlinear function as follows:

{R(k)/D, VR(k)< D, 3.12)

GB=110 VR(kK)> D,
where D, is an adjustable real value. The switching line L, is assumed to be fixed while
L, and L, are located © degrees apart from vertical and horizontal axes respectively. The
maximum value of control signal U,,,, depends on the generating unit and assumed tc be
known [109]. Therefore, the adjustable parameters are 6, D, and U,,, For the optimal

settings of these parameters. a quadratic performance index J is considered:

Ny

(072
‘e
1)

Al N
J= Y [T Ao , (O]
1=t &=t
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where MM is the number of machines and V is the total data number. In the above index,
the speed deviation of jth machine Aw(Kk) is weighted by the respective time k7. The

tuning parameters are adjusted so as to minimize the performance index J.

8.3 DESIGN OF THE PROPOSED STABILIZER

The RBPSS adjustable parameters are usually optimized to minimize the performance
index in (8.13) one at a time [108-109]. Therefore, the optimization process becomes a
laborious, tedious, and time consuming task. Moreover, the interaction between
parameters has not been taken into consideration. The proposed approach employs GA
for optimum settings of the adjustable parameters. At first, the adjustable parameters are
coded in a binary string and the initial population is generated randomly. The design steps

of the proposed GRBPSS can be summarized in the flow chart shown in Fig. 8.3.

8.4. EXAMPLE 1: SINGLE MACHINE SYSTEM

8.4.1 TEST SYSTEM AND OPERATING CONDITIONS

In this study, the single macxine infinite bus system shown in Fig. 8.1 is considered.

The system model and parame:zrs are given in Appendix E. Three different operating

conditions are used in simulations to cover a wide range of operating conditions. These

operating conditions are given ir. Table 8.1.
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TABLE 8.1 Operating conditions for example 1

Operating Conditions P (pu) Q (pu)
(P;,Qp) 1.1 0.4
(P;,Q) 0.4 02
(P;,Q;) 0.7 -0.2
8.4.2 PARAMETER SETTINGS

The proposed approach has been applied to search for optimal settings of the tuning
parameters 6, D,, and U,,;, Population size, maximum number of generations, and
crossover and mutation probabilities are selected after several trials to be 30, 100, 0.75,
and 0.001 respectively. The final values of the tuning parameters are given in Table 8.2.

Fig. 8.4 shows the convergence rate of the performance index J with the number of

generations.

TABLE 8.2 The proposed GRBPSS parameter settings for example 1

0 (rad) Dr Umin (pll)
0.1242 10.1 0.0945
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8.4.3 SIMULATION RESULTS

A number of studies have been performed with the proposed GRBPSS. The
performance of the proposed GRBPSS is compared to those of the RBPSS [108] and the
CPSS [94] with a transfer function given by

3s . 1+068Ss
= 7.091 A 8.14
“ 3o 0 2° (.14)

8.4.3.1 OPERATING CONDITION (2, Q))

The system performance with a 10% step increase in input torque is shown in Fig.
8.5. Fig. 8.6 shows the simulation results with a three phase fault disturbances at the
infinite bus for 0.1s. The results with a 10% pulse in reference voltage for 2s are shown in
Fig. 8.7. It is obvious that, the system performance with the proposed GRBPSS is the best
in the sense that the first swing in the torque angle is significantly suppressed. This is

very helpful in the improvement of the disturbance tolerance ability of the system.

8.4.3.2 OPERATING CONDITION (2,, 0,)

A 40% step increase in input tczque and a 0.1s three phase fault at infinite bus

disturbances were applied. The simulation results are shown in Figs. 8.8 and 8.9



149

respectively. The results show the capability of the proposed GRBPSS to damp out the

oscillations and work properly over a wide range of operating conditions.

8.4.3.3 OPERATING CONDITION (#;, Q)

A 30% step increase in input torque and a 0.1s three phase fault at infinite bus
disturbances were applied. The simulation results are shown in Figs. 8.10 and 8.11
respectively. It can be concluded that the proposed GRBPSS provides good damping

characteristics to system oscillations.
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8.5 EXAMPLE 2: 3-MACHINE 9-BUS SYSTEM

8.5.1 PARAMETER SETTINGS

In this study, the nine-bus three-machine power system shown in Fig. 5.7 was
considered. It was shown in Chapter 5 that two stabilizers are enough to damp out the
electromechanical modes of oscillations. Therefore, we proposed two GRBPSSs installed
on G2 and G3. However, for the sake of comparison with the RBPSSs developed in
[109], the case of three installed stabilizers was also considered. GA have been applied to
search for optimal settings of the proposed GRBPSS parameters. Population size,
maximum number of generations, and crossover and mutation probabilities are selected to
be 40, 60, 0.75, and 0.001 respectively. The final values of the tuning parameters in both
cases of two and three installed stabilizers are given in Table 8.3. Fig. 8.12 shows the

convergence rate of the performance index J with the number of generations.

8.5.2 SIMULATION RESULTS

To demonstrate the capability of the proposed GRBPSS to enhance system damping
over a wide range of operating conditions, various loading conditions, as given in Table
5.3, were considered. The system performances with two GRBPSSs and three GRBPSSs

are compared with that of RBPSS [109]. A 6-cycle three phase fault at bus 7 was applied

as follows.
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Fig. 8.12 Variations of performance index J for example 2

TABLE 8.3 The proposed GRBPSS parameter settings for example 2
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No. of GRBPSSs Location 0 (rad) D, U,in (PU)
Two G2 -0.1213 7.5597 0.0283
G3 0.0110 20.000 0.1197
Gl 0.0079 10.079 0.1984
Three G2 -0.0110 17.795 0.0173
G3 0.0551 18.853 0.0110
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8.5.2.1 NOMINAL LOADING CONDITION

The dynamic response of the system is shown in Fig. 8.13. It is obvious that the
system performance with two of the proposed GRBPSSs is much better than its
performance with three of RBPSSs and the oscillations are damped out much quicker.
However, the system performance is further improved using three of the proposed

GRBPSSs and the system returns to its initial state much faster.
8.5.2.2 HEAVY LOADING CONDITION

Fig. 8.14 shows the simulation results in this case. The results here show that the
settling times of the speed deviations of all units are much reduced confirming the

superiority of the proposed GRBPSS to RBPSS.
8.5.2.3 LIGHT LOADING CONDITION
The simulation results are shown in Fig. 8.15. The results show clearly that the

proposed GRBPSS provides very good damping characteristics over a wide range of

operating conditions.
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8.6 EXAMPLE 3: NEW ENGLAND SYSTEM

8.6.1 SYSTEM DESCRIPTION

In this study, the 10-machine 39-bus New England power system shown in Fig. 8.16
was considered [80,85]. Each machine has been represented by a fourth order two-axis
nonlinear model. Generator G1 is an equivalent power source representing parts of the
U.S.-Canadian interconnection system. Details of the system data are given in Appendix
F. In this study, the following disturbances are considered for the simulations:

(a) Three phase fault for 0.10s at bus 29 at the end of line 26-29.
(b) Three phase fault for 0.15s at bus 15 at the end of line 14-15.

Without PSSs, the system responses due to the above disturbances are shown in Figs.
8.17 and 8.18 respectively. It is observed that the system damping is very poor and the
system is highly oscillatory. Therefore, it is necessary to install stabilizers in order to
have good dynamic performance. To identify the optimum locations of PSSs, the
participation factor method [80] and the sensitivity of PSS effect (SPE) method [81] were
used. The results of both methods indicate that the gznerators G5, G7, and G9 are the
optimum locations for installing PSSs to damp ou: the electromechanical modes of
oscillations. Therefore. these generators are equipted with three of the proposed

GRBPSSs.
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8.6.2 PARAMETER SETTINGS

The proposed approach has been applied to search for optimal settings of the
proposed GRBPSSs parameters. Population size, maximum number of generations, and
crossover and mutation probabilities are selected after several trials to be 30, 50, 0.75,
and 0.005 respectively. The final values of the tuning parameters are given in Table 8.4.
Fig. 8.19 shows the convergence rate of the performance index J with the number of

generations.
8.6.3 SIMULATION RESULTS

To demonstrate the capability of the proposed GRBPSSs to damp out the
electromechanical modes of oscillations, the system performance with the proposed
GRBPSSs is compared to that with CPSSs [85]. The simulation results for the
disturbances (a) and (b) described above are shown in Figs. 8.20 and 8.21. It can be seen
that the dynamic behavior of the system is highly improved by applying the proposed
GRBPSSs in the sense that the oscillations are damzed out very quickly. However, for
accurate and meaningful assessment, the speed devizdons of the generators G5 through
G9 for disturbance (a) and for disturbance (b) z-2 given in Figs. 8.22 and 8.23
respectively. These results show the capability of t=2 proposed GRBPSS to damp out

local modes and interarea modes of oscillations.
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TABLE 8.4 The proposed GRBPSS parameter settings for example 3

Location 0 (rad) D, Upin (PU)
G5 0.0803 2.3631 0.1827
G7 0.1843 10.079 0.1843

G9 0.1496 3.9378 0.1165
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8.7 SUMMARY

This chapter presents a novel approach to hybridize the RBPSSs using GA. In this
approach, GA have been used to search for optimal settings of RBPSS parameters. This
overcomes the iterative and trial and error natures of the traditional RBPSS design. The
proposed GRBPSS has been applied to a single machine and to two multimachine power
systems. The results show that the proposed stabilizer exhibits good damping
characteristics.

A natural extension to this chapter, to get still better results, is to hybridize the fuzzy
logic PSSs with GA as they have the advantage of smooth transition between control
rules. However, the design problems of the rule-based PSSs and fuzzy logic PSSs are
similar to some extent. Incorporating GA into fuzzy logic PSSs design will be proposed

in the next chapter.
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CHAPTER9

HYBRID GENETIC-BASED FUZZY LOGIC PSSs

9.1 INTRODUCTION

Recently, fuzzy logic power system stabilizers (FLPSSs) [83-95] have been proposed
and investigated. FLPSSs appear to be the most suitable stabilizers due to their lower
computation burden and robustness. Unlike the most conventiﬁnal methods, an explicit
mathematical model of the system dynamics is not required to design a good FLPSS that
makes the FLPSS more suitable for on-line computer control. In addition, FLPSSs can be
easily set up and implemented using a microcomp:ter with A/D and D/A converters
[110-113].

Although fuzzy logic controllers showed promis:ag results, they are subjective and
somewhat heuristic. In addition. the determinai::a of fuzzy rules. generation of
membership functions, and the choice of scaling fz:mors are done either iteratively, by

trial-and-error, or by human experts. There is to-c:te no generalized method for the
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formulation of fuzzy control strategies, and design remains an ad hoc trial and error
exercise. That makes the design of fuzzy logic controller a laborious and time-consuming
task. To overcome such problems, the recent direction is to use GA to search for optimal
settings of fuzzy logic controller parameters [114-118].

In this chapter, we propose an approach to integrate the use of GA and fuzzy logic
systems in order to design the proposed hybrid genetic-based fuzzy logic power system
stabilizer (GFLPSS). The proposed approach uses GA to search for optimal or near
optimal settings of fuzzy logic power system stabilizer parameters. Incorporation of GA
in FLPSSs design will add an intelligent dimension of these stabilizers and reduce

significantly the time consumed in the design process

9.2 FUZZY LOGIC CONTROL SCHEME

As shown in Chapter 8, the supplementary stabilizing signall u is added to the
excitation loop as shown in Fig. 8.1. At time ¢, the stabilizing signal u(f) is given by
u()y=U(k) kT<t<(k+D)T .1
The value of U(k) is determined at each sampling time based on fuzzy logic througr

the following steps:
Step 1: The speed deviation. Aw(k), is measured at every sampling time. and tk:
acceleration of the machine, A(k), is calculated by
A(R)=[ Ao(k) - Aa(k-1) ]/ T 9.2

Step 2: Compute the scaled acceleration, A,(k), using
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A (k) =A(k)*F, (9.3)
Step 3: The generator condition is given by the point z(k) in the phase plane as shown
in Fig. 9.1, where
z(k) = (Ao(k) , 4,6)) 94
Step 4: From the phase plane, calculate R(k) and 6 (k) using
R(k) =] z(k) | 9-5)
and,
0 (k)= tan"( 4,k) / Aa(k)) (9.6)
Step 5: Determine the values of the fuzzy membership functions N,(0 ) and P(0 ) as
shown in Fig. 9.2 [84].

The membership functions N(6 ) and P,(0 ) are defined as:

N0 )= 1-®(x;0,,8,,,9,) Vx<0, o7
> D(x;0,,,0,,.2%) Vx>0, '
and,
P(0)=¥021-8,0,) (9.8)
where
(0.0 Vx<a
A"} vxelab]
®(x:a.b.cr=4 €79 . 9.9)
X -
1-2 ¥ b,
[c a] xelb.c[
1.0 Vx2c¢
o b,c-b/2, Vx<c
W(x:b.c) = J (¢ =b,c=b/2.) 9.10)

1 —-®(x:ic.c+b/2. c+b) Yx>c
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0, =(Qr+0,)/2 (9.11)
8, =0,+6,)/2 (9.12)
0,,=(2x+6,)/2 (9.13)

Step 6: Determine the value of the gain function G(k) as shown in Fig. 9.3 [84,108].

The gain function is defined as
R(k)y/ D, VR(k)<D
G(k) = "
(&) {1.0 VR(k)> D, ©.14)
Step 7: Compute the stabilizing signal U{(£) using
Uk)=G(k) [N(6) - Py(6) ] Upxx (9.15)

Step 8: Increase k by | and return to step 1.
Step 9: Repeat until the end of simulation time.
The main tuning parameters are 0 » Fo» and D,. For the optimal settings of these

parameters, a quadratic performance index J; is considered:

J, = f i[kTAco,(k)]z (9.16)

=t k=l
In the above index, the speed deviation Aw (k) is weighted by the respective time k7.
The index J, is selected because it reflects a small settling time, a small steady state error,
and small overshoots. The tuning parameters are adjusted so as to minimize the index J;.

Furthermore, a non-weighted performanc: index J, is also considered for further

information and comparison purposes.

I A
J, =Y Ylso, (k) 9.17)
= k=l
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9.3 DESIGN OF THE PROPOSED STABILIZER

The FLPSS adjustable parameters are usually optimized to minimize the performance
index J; iteratively [84-85]. Therefore, the optimization process becomes a laborious,
tedious, and time consuming task. Moreover, the interaction between parameters has not
been taken into consideration. The proposed approach employs GA for optimum settings
of the tuning parameters 0 ;, F,, and D,. These parameters are optimized simultaneously.
At first, the adjustable parameters are coded in a binary string and the initial population is
generated randomly. The design steps of the proposed GFLPSS can be summarized in the

flow chart shown in Fig. 9.4.

9.4 EXAMPLE 1: SINGLE MACHINE SYSTEM

9.4.1 TEST SYSTEM

In this study, the single machine infinite bus system shown in Fig. 8.1 is considered.
The system model and parameters are given in Appendix E. The operating conditions

given in Table 8.1 are used in the simulations to cover a wide range of operating

conditions.
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Fig. 9.4 The proposed GFLPSS computational flow chart
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9.4.2 PARAMETER SETTINGS

The proposed approach has been applied to search for the optimal settings of the
tuning parameters 0, F,, and D,. Population size, maximum number of generations, and
crossover and mutation probabilities are selected based on several trials to be 30, 100,
0.75, and 0.001 respectively. The final values of the tuning parameters are given in Table
9.1. Fig. 9.5 shows the convergence rate of the performance index J with the number of

generations.
9.4.3 SIMULATION RESULTS

A number of studies have been berformed with the proposed GFLPSS. The
performance of the proposed GFLPSS is compared to those of the FLPSS [84] and the

CPSS [94] with a transfer function given in (8.14).
9.4.3.1 OPERATING CONDITION (P,, 0))

The system performance with a 10% step increase in input torque is shown in Fig.
9.6. Fig. 9.7 shows the simulation results with three phase fault disturbances at the
infinite bus for 0.1s. The results with a 10% pulse in refersnce voltage for 2s are shown in

Fig. 9.8. It is obvious that, the system performance with the proposed GFLPSS is the best
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in the sense that the first swing in the torque angle is significantly suppressed. This is

very helpful in the improvement of the disturbance tolerance ability of the system.
9.4.3.2 OPERATING CONDITION (P, 0,)

A 40% step increase in input torque and a 0.1s three phase fault at infinite bus
disturbances were applied. The simulation results are shown in Figs. 9.9 and 9.10
respectively. The results show the capability of the proposed GFLPSS to damp out the

oscillations and to work properly over a wide range of operating conditions.
9.4.3.3 OPERATING CONDITION (23 0;)

A 30% step increase in input torque and a 0.1s three phase fault at infinite bus
disturbances were applied. The simulation results are shown in Figs. 9.11 and 9.12
respectively. It can be concluded that the proposed GFLPSS provides good damping

characteristics to system oscillations.



TABLE 9.1 The proposed GFLPSS parameters settings for example 1

Fig. 9.5 Variations of performance index J, for example 1
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9.5 EXAMPLE 2: NEW ENGLAND SYSTEM
9.5.1 SYSTEM DESCRIPTION

In this study, the 10-machine 39-bus New England power system shown in Fig. 8.16
was considered. Details of the system data are given in Appendix F. In this study, the
following disturbances are considered for the simulations:

(a) Three phase fault for 0.10s at bus 29 at the end of line 26-29.
(b) Three phase fault for 0.15s at bus 15 at the end of line 14-15.
(c) Three phase fault for 0.15s at bus 22 at the end of line 21-22.

Without PSSs, the system responses due to the above disturbances are shown in Figs.
9.13, 9.14, and 9.15 respectively. It is observed that the system damping is very poor and
the system is highly oscillatory. As shown in Chapter 8, it is necessary to install three
stébilizers at generators G5, G7, and G9 in order to have a good dynamic performance
and damp out the electromechanical modes of oscillations. Therefore, these generators are

equipped with three of the proposed GFLPSSs.
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9.5.2 PARAMETER SETTINGS

The proposed approach has been applied to search for optimal settings of the
proposed GFLPSSs parameters. Population size, maximum number of generations, and
crossover and mutation probabilities are selected after several trials to be 30, 50, 0.75,
and 0.005 respectively. The final values of the tuning parameters are given in Table 9.2.
Fig. 9.16 shows the convergence rate of the performance index J; with the number of

generations.
9.5.3 SIMULATION RESULTS

To demonstrate the capability of the proposed GFLPSSs to damp out the
electromechanical modes of oscillations, the system performance with the proposed
GFLPSSs is compared to those with FLPSSS and CPSSs [85]. The simulation results for
disturbance (a) described above is shown in Fig. 9.17. It can be seen that the dynamic
behavior of the system is highly improved by applying the proposed GFLPSSs in the
sense that the oscillations are damped out very quickly. However, for a better
comparison. the responses of the rotor angles of generators G5 through G9 referred to G1
and the speed deviations of these generators for disturbance (a) are shown in Figs. 9.18-

9.22 respectively.



TABLE 9.2 The proposed GFLPSS parameters settings for example 2

Location 0 (rad) F, D,
G5 2.4134 0.7953 17.008
G7 2.4291 0.9134 17.008
G9 2.2480 0.9528 17.165
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Fig. 9.16 Variations of performance index J, for example 2
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The speed deviations of generators G5 through G9 for disturbances (b) and (c) are
shown in Figs. 9.23 and 9.24 respectively. It is obvious that the system performance with
the proposed GFLPSSs is greatly improved and the settling times of speed deviations are
much reduced. In addition, the results show the ability of the proposed GFLPSS to damp

out local modes and interarea modes of oscillations as well.
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9.6 COORDINATION BETWEEN GFLPSS AND CPSS

In most situations, the newly installed GFLPSSs will have to work together with
CPSSs which already exist in a power system. In this section, system response with the
proposed GFLPSSs and CPSSs working together has been also investigated. For the 10-
machine 39-bus system considered in example 2, several combinations between the
proposed GFLPSSs and CPSSs can be created as follows:

CCC
PCC
CPC
cCp
PPC
PCP
CPP
PPP

PN AW

where C and P refer to CPSS and Proposed GFLPSS respectively. The first, second, and
third letters in each combination denote the type of stabilizer installed on G5, G7, and G9
respectively.

The system responses to the disturbances (a), (b), and (c) with different combinations
are shown in Figs. 9.25, 9.26, and 9.27 respectively. It can be seen that the two types of
PSSs can work cooperatively. The response with the proposed GFLPSSs and CPSSs
combinations is better and the oscillations are damped out much quicker than the
response with only CPSSs. Generally, the system performance is improved as the number

of the proposed GFLPSSs installed increases as shown in these Figs.
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The values of the performance indices J; and J; given in (9.15) and (9.17) for ail
combinations and disturbances are given in Tables 9.3, 9.4, and 9.5. It is seen that the
values of the performance indices with any combination that includes any number of the
proposed GFLPSSs are much reduced as compared to the cases with CPSSs. This reflects
small settling times, small speed deviations, and small steady state errors. However, the
values of the performance indices are reduced as the number of the proposed GFLPSSs

installed increases.

9.7 SUMMARY

This chapter proposes a novel approach to hybridize the FLPSS with GA. In the
proposed approach, GA are used to search for optimal parameters of FLPSS. The
proposed GFLPSS has been tested in a single machine and in multimachine power
systems. The coordination of the proposed GFLPSS with the CPSS has been investigated.
The results show the ability of the proposed GFLPSS to damp out the local as well as the
inter-area modes of oscillations. In addition, the proposed GFLPSS show its potential to
work cooperatively with the CPSS.

Generally, the proposed GFLPSS shows better results than GPSS and GRBPSS
proposed in chapters 7 and 8 respectively in the sense that the system with this stabilizer

has better damping characteristics to different modes of oscillations.
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TABLE 9.3 Values of performance indices with all combinations for disturbance (a)

Stabilizer Type and Location Performance Index
G5 G7 G9 J J
without without without 236.401 11.7624
CPSS CPSS CPSS 20.3367 2.5561
GFLPSS CPSS CPSS 42198 1.2760
CPSS GFLPSS CPSS 4.4672 1.3101
CPSS CPSS GFLPSS 0.3575 0.3391
GFLPSS GFLPSS CPSS 3.9181 1.2290
GFLPSS CPSS GFLPSS 0.2465 0.3200
CPSS GFLPSS GFLPSS 0.2502 0.3216
GFLPSS GFLPSS GFLPSS 0.2045 0.3079

TABLE 9.4 Values of performance indices with all combinations for disturbance (b)

Stabilizer Type and Location Performance Index
G5 G7 G9 Ji J,

without without without 50.7242 4.0678
CPSS CPSS CPSS 14.1141 2.2615
GFLPSS - CPSS CPSS 2.5734 1.2739
CPSS GFLPSS CPSS 2.0776 1.1591
CPSS CPSS GFLPSS 3.7721 1.4669
GFLPSS GFLPSS CPSS 1.2708 0.9292
GFLPSS . CPSS GFLPSS 1.6514 1.0919
CPSS GFLPSS GFLPSS 1.3959 1.0043
GFLPSS GFLPSS GFLPSS 0.8276 0.8017

TABLE 9.5 Values of performance indices with all combinations for disturbance (c)

Stabilizer Type and Location Performance Index
G5 G7 G9 Ji J,

without without without 62.6730 5.3128
CPSS CPSS CPSS 16.0893 29121
GFLPSS CPSS CPSS 3.7046 1.7957
CPSS GFLPSS CPSS 2.6404 1.4283
CPSS CPSS GFLPSS 5.1512 2.0475
GFLPSS GFLPSS CPSS 1.7177 1.1963
GFLPSS CPSS GFLPSS 3.0212 1.6689
CPSS GFLPSS GFLPSS 2.0569 1.3208
GFLPSS GFLPSS GFLPSS 1.4945 1.1198
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CHAPTER 10

CONCLUSION

10.1 CONCLUSIONS

This dissertation has introduced several intelligent techniques and hybrid systems to
power system identification, on one side, and power system stabilizer design, on the other
side.

On the basis of analysis and results presented in this dissertation, the following
conclusions may be drawn:

1. A novel off-line identification scheme for synchronous machines was proposed. The
proposed scheme exploits the universal approximation property of radial basis
function networks. Two different learning algorithms have been considered to show
the potential of the proposed identifier to capture the nonlinear characteristics of
synchronous machines. The proposed identifier was tested and validated under

different variations in synchronous machine inputs. Moreover, a comparison between
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the proposed radial basis function network identifier and backpropagation network
identifier has been carried out to show the superiority of the proposed identifier.

A novel on-line identification scheme for synchronous machines was proposed. The
proposed identifier is aimed to produce a one-step-ahead prediction of the
synchronous machine outputs. A recursive learning algorithm has been developed to
update the proposed identifier parameters in real-time. The proposed identifier was
tested and validated under different variations in machine inputs. Fast learning
capability of the proposed identifier to the nonlinear characteristics of synchronous
machines has been demonstrated.

A novel scheme for the adaptive on-line tuning of power system stabilizer parameters
using radial basis function networks was proposed. The proposed scheme is aimed to
re-tune the PSS parameters based on real-time measurements of machine loading
conditions. The ability of the proposed scheme to enhance power system stability has
been presented.

A novel on-line hybrid neuro-fuzzy power system stabilizer was proposed. The
proposed stabilizer incorporates the linguistic and numerical information in a uniform
fashion and combines the strengths of neural networks and fuzzy logic systems. The
proposed scheme uses fuzzy basis function networks to re-tune the PSS parameters
based on real-time measurements of machine loading conditions. Moreover, a
comparison between RBFN and FBFN based PSSs has been carried out.

A scheme to incorporate GA into the design of PSSs was proposed. The proposed

scheme is aimed to waive the linearization step in conventional PSS design. In
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addition, the coordination between the proposed stabilizer and the existing
conventional stabilizers has been investigated.

A novel scheme for hybridizing the rule-based PSSs with GA was proposed. The
proposed scheme overcomes the problems of rule-based PSS design by allowing GA
to search for optimal parameters of the stabilizer.

A hybrid genetic-based fuzzy logic PSS was also proposed. The proposed scheme
employs GA to search for optimal settings of fuzzy logic PSS parameters. The
coordination of the proposed stabilizer with other existing stabilizers has been
examined.

In case of insufficient number of training patterns, FBFN has better approximation
capabilities and more robust than RBFN.

All the proposed schemes were tested through their applications to single machine
infinite bus systems and multimachine power systems. The results of the proposed
schemes were compared with those of conventional techniqués reported in the
literature. It has been found that the system performance is greatly improved when
using the proposed schemes.

Upon applying the proposed schemes, it has been found that the hybrid systems such
as neuro-fuzzy, genetic rule-based, and genetic-based fuzzy logic systems have better
performance. This is because hybridizing two techniques combines their different
strengths and overcomes their shortcomings and weaknesses.

All the proposed schemes are of a decentralized nature since all of them rely on local

measurements. Therefore, thev are easy to tune and install. In addition, the proposed
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stabilizers do not require real-time parameter estimation. This makes them easy to
implement on a microcomputer.

All computer programs used throughout this work were created personally in
FORTRAN such as k-means, OLS, BP, on-line identification algorithm, GA design
programs, nonlinear simulation of single machine infinite bus and multimachine
power systems with several types of disturbances using the conventional as well as

the proposed stabilizers.

10.2 SUGGESTION FOR FUTURE RESEARCH

For future research the following directons are recommended:

Application of the proposed iderrification schemes to load modeling and
identification.

Investigation of the coordination of the proposed stabilizers with SVC to damp out
power system oscillations.

Hybridizing the k-means learning algerithm and the orthogonal least squares learning
algorithm for training of RBFN. Tais will combine the good features in both
algorithms and overcome the prespecizied number of centers of k-means algorithm.
Exploiting the capability of the GA o search for the optimal centers and widths of
RBFN.

Extension of the proposed schemes o other types of stabilizers such as nonlinear

variable structure stabilizers.
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Exploiting the new technology of VLSI to implement the proposed schemes and test
them practically on a micro-machine power system model.

Developing the proposed schemes to be self-organized and self<earned in real-time
via interaction with the environment.

Examining the feasibility of applying other types of neural networks.

Developing strategies for on-line application of the proposed hvbrid genetic based
stabilizers in real-time by modifying the GA to match the on-line environment
requirements.

Exploiting the capability of the GA to prepare the training pattzrns for radial basis
function networks as well as fuzzy basis function networks.

Some of these topics are already under serious investigation by the author.



APPENDIX A
FLUX-LINKAGE MODEL
System Model:
pd =0 ,(0 —-1)
po =[T -T -Dl@-1)}/ M

Py, =0,V +ri, +oy,)
py, =0, (V, +r,i, oy ,)
PY =0, (Vp —reif)
PY p =0 ,(=rpip)

PY o =@ ,(—7ip)

T, =iy, +i¥,
Vy=V,sind + Ry, - X4i,
V,=V,cosd + Ry, + Xi,

V2 +V}

xmd xmd xp || ip

|

H

= R
o 3
(I
(]
-~ |
S
| |

A4 Q mq
Parameters:
©, =377 rad/s; M=6.5pu;
Xq=1.91; xg=1.97;
Xme = 1.77; xp= 1.94;
= (.0015; r,= 0.005;
= (0.0084; =0.063;
D=0.0

All resistances and reactances are in per-unit.

X4= 2.0;

Xmd = 1.86;
Xq=1.96;

rp= 0.0078;

XT = 0.45;

(A.1)
(A2)
(A3)
(A4)
(A.5)
(A.6)
(A.7)
(A.8)
(A.9)
(A.10)

(A.11)

(A.12)

(A.13)
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APPENDIX B

System Model:

pd =0,(0 -1)

po =(TI,-T,-D(e -1))/ M
pE‘; = (Efd - (x4 “x;l)id -E;)/Td'o
pEfd=(Ka(Vref-V+Uc)-Efd)/Ta
Vy=V,sind +R,i, - X,i,

V,=V,cosd + R,i, + X i,

V= Vs vE

T, = E,i, - (x; - x,)i4i,

Parameters:
M=4.74s, 0y=377rad/s, x4=1.7,
xq=1 .64, x", =(.245, R.=0.02,
X.=0.4, D=0.0, T, =59,
T,=0.05, K,=400, T,=0.1,

~13pu<E, <73pu, ~012pu<U, <0.12pu

B.1)
(B.2)
(B.3)
B.4)
(B.3)
(B8.6)
B.7)
(B.8)
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All resistances and reactances are in per-unit and time constants are in seconds.
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APPENDIX C

HEFFRON-PHILLIPS-DEMELLO-CONCORDIA LINEARIZED MODEL

K,
AT, }\fT,,,—ATe 1 Ao | 2f AS
+\J_ D+ sM s )
K; K,
AE, -
K3 -
1+ STdo K3
AEy
Ks
Fig. C.1 Linearized incremental model of a synchronous machine
System Model:
p[X]=[4][X]+[B]U] (C.1)
where;
[X]=[A0 A8 AE, AE,] (C.2)

0 -K,/M -K.'M 0
@, 0 0 0
0 -K,/T, -1/(I,K,) 1/T,
0 -K K. /T, -KK/T, -1/T,

[4]= (C.3)
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[Bl=fo 0 o x,/T,] (C.4)
K, =Fy(x; —x, Yig + F:,[E;o +(x, — Xy )ig] (C3)
K, =Y (x, ~x, g+ 1T, [E:;o +(x, — Xy )igol+ oy (C6)
K3=1/[1+(x,,—x;)1;] (C.7)
= (x, ~x,)F, (C.8)
—( deV +Fx Vi)V, (C9)
K=, deV + Y x Vi)V, (C.101
F,= V,,(—R2 cosd , + X, sind )/ Z? (C.11
F, =V,(X,cos8,+R,sin8 )/ Z? (C.12)
Y, =(C,X,-C,R,)/Z? (C.13}
Y =(CR+CX,)/ Z] (C.13;
Z}=RR,+X,X, (C.14)
R, =R, -C,x, (C.15i
X, =X, +Cx, (C.16
R, =R, -Cyx, (C.17:
X,=X,+Cx, (C.18
C, =1+RG-X.B (C.19:
C,=R,B+X,G (C.20:
Parameters:
M=4.74s, ©,=377rad/s, xs~1.7,
x=1.64, x,=0.245, R=0.02,
=0.4, D=0.0, T, =5.9,
T,=0.05, K,=400, T,=0.1,
G =0.0, B =0.0,
-13pu<E, <73pu, -012pu<U, <0.12pu

All resistances, reactances, and admittances are in per-unit and time constac:s are
in seconds.
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THREE-MACHINE NINE-BUS POWER SYSTEM
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System Model;
pd; =0 ,(,-1) D.1)
pmi=(Tmi_Tei—Di(mi—l))/Mi (D.2)
qui = (Efdi — (x4 - xz'ii)idi - E;i) / Ta;oi (D.3)
pE, = ("(xqi - xqi)iqi - Ec'ii) / 1-;'01' (D.4)
pEfdi = (Kai(Vreﬁ —Vi +Uci)- Efdi)/ Tai (DS)
1, = Eqiiqi + E iy - (xqi = xdi)idiiqi (D.6)
Generator Data;
Gl G2 G3
10) 73.6400 5.4000 3.0100
X, 0.1460 0.8958 1.3125
X, 0.0969 0.8645 1.2578
x"i 0.0608 0.1198 0.1813
%, 0.0969 0.1969 0.2500
7:1'0 8.9600 6.0000 5.8900
]’;’0 0.0000 0.5350 0.6000
D 0.0100 0.0100 0.0100
K, 100.00 100.00 100.00
T, 0.0500 0.0500 0.0500
Line Data:
Line No. From Bus To Bus R X B/2
1 1 4 0.0000 0.0576 0.0000
2 4 5 0.0100 0.0850 0.0880
3 5 7 0.0320 0.1610 0.1530
4 7 2 0.0000 0.0625 0.0000
5 7 8 0.0085 0.0720 0.0745
6 8 9 0.0119 0.1008 0.1045
7 9 3 0.0000 0.0586 0.0000
8 9 6 0.0390 0.1700 0.1790
9 6 4 0.0170 0.0920 0.0790
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Bus Data:
Bus No. Voltage Generation Load

Mag. (pu) Ang.(deg) P (pu) Q (pw) P (pu) Q (pw)
1 1.0400 0.000 0.7160 0.2700 0.0000 0.0000
2 1.0250 9.300 1.6300 0.0670 0.0000 0.0000
3 1.0250 4.700 0.8500 -0.109 0.0000 0.0000
4 1.0260 -2.20 0.0000 0.0000 0.0000 0.0000
5 0.9960 -4.00 0.0000 0.0000 1.2500 0.5000
6 1.0130 -3.70 0.0000 0.0000 0.9000 0.3000
7 1.0260 3.700 0.0000 0.0000 0.0000 0.0000
8 1.0160 0.700 0.0000 0.0000 1.0000 0.3500
9 1.0320 2.000 0.0000 0.0000 0.0000 0.0000
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APPENDIX E
System Model:
pd =0 ,(0 -1) E.D
po =(T,-T,-D(o -1))/ M (E.2)
PE; =(Ej‘d —(xd—x;i)id-E:;)/Ta:o (E.3)
pE, =(K,(V,, -V +U,)-E,)/T, (E.4)
Vy=V,sind + R,i, — Xeiq (E.5)
V,=V,cosd +R,i + X i, (E.6)
V=\Vi+V} E.7
I, = Ejj, - (x, - )i, )
T,=T,+AT, (E.9)
pAT, =[-K (0 -1)- AT, ]/ T, (E.10)
PAT, = (AT, - AT,)/ T, (E-11)
Parameters:
M=9.6s, ©,=377rad/s, x4=0.973,
X¢=0.55, x,=0.19, R.=0.03,
X.=0.6, D=0.01, T,=7.76,
T,=0.1, K,=50, G=02,
B=-0.1, K,=0.027, T,=0.1,
T=0.3, ~T0pu<E, <70pu,
—04pu<U, <04pu, ~0lpu/s< AT, <0lpul/s

All resistances, reactances, and admittances are in per-unit and time constants are
in seconds.
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APPENDIX F

NEW ENGLAND POWER SYSTEM

Generator Model:
pd, =0, (0, -1) (F.1)
pmi=(Tmi-Tei-Di(mi—1))/Mi (F.2)
pE;i = (Efdi - (x4 — x;ﬁ)idi - E;.') / Td'oi (F.3)
pE‘.ﬁ = (-(xqi - x:yi)iqi - E:ﬁ) / 7:;'01' (F.4)
T, = Et;iiqi + E;iidi - (x;i - x;i)idiiqi (F.3)

Exciter Model:

Sg
Vref + 1 Efd
- :;_ Ket+sTg ]

14
SKF
1+ STF
Fig. F.1 IEEE type | rotating excitation system model
where
S = de”** F6)
V
EX’ = rmax
K +C, 7
EX, =075EX, (F.8)
B=1In(C,/C,))!(EX, - EX,) (F.9)

A=C, /| e"E (F.10)
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Exciter Data:
Gl G2 G3 G4 G5 G6 G7 G8 G9 GIo
K, 0.0 6.2 3.0 50 400 50 400 5.0 40.0 50
T, 0.0 005 006 006 002 0.02 002 0.02 0.02 0.06
Vemin 0.0 -0 -10 -0 -100 -10 -65 -10 -10.0 -1.0
Vimax  0-0 1.0 1.0 1.0 10.0 1.0 6.5 1.0 10.0 1.0
Ke 00 -633 -002 -053 10 -042 10 -047 10 -049
Te 0.0 0405 0.300 0.500 0.785 0.471 0.730 0.528 1.400 0.250
Ke 0.0 0.057 0.080 0.080 0.030 0.075 0.030 0.085 0.030 0.040
Te 0.0 0.5 1.0 1.0 10 1246 1.0 1.26 1.0 1.0
C, 0.0 066 0.13 008 007 0.064 053 0.072 0.62 0.08
C, 0.0 0.88 034 0.314 091 0251 074 0.282 0.85 0.26
" G1 has constant excitation.
Generator Data:
Gl G2 G3 G4 GS G6 G7 G8 G9 Gl10
H(s) 5000 303 358 286 260 348 264 243 345 42.0
x, 0020 0295 0.250 0.262 0.670 0.254 0.295 0.290 0.211 0.100
X, 0.019 0282 0.237 0.258 0.620 0.241 0.292 0.280 0.205 0.069
X, 0.006 0.070 0.053 0.044 0.132 0.050 0.049 0.057 0.057 0.031
x; 0.008 0.170 0.088 0.166 0.166 0.081 0.186 0.091 0.059 0.008
7;0 700 656 570 569 540 730 566 670 479 10.2
1;'() 070 150 130 150 044 040 1.50 041 196 0.00
D 700 975 100 100 700 100 8.00 9.00 300 4.00
Line Data:
Line No. FromBus To Bus R X B Tap (%)
1 39 31 0.0035 0.0411 0.6987 0.00
2 39 1 0.0010 0.0250 0.7500 0.00
3 31 32 0.0013 0.0151 0.2572 0.00
4 31 25 0.0070 0.0086 0.1460 0.00
5 32 33 0.0013 0.0213 0.2214 0.00
6 32 18 0.0011 0.0133 0.2138 0.00
7 33 34 0.0008 0.0128 0.1342 0.00
8 33 14 0.0008 0.0129 0.1382 0.00
9 34 35 0.0002 0.0026 0.0434 0.00
10 34 37 0.0008 0.0112 0.1476 0.00
11 35 36 0.0006 0.0092 0.1130 0.00
12 35 11 0.0007 0.0082 0.1389 0.00
13 36 37 0.0004 0.0046 0.0780 0.00
14 37 38 0.0023 0.0363 0.3804 0.00
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Line Data Contd
LineNo. FromBus To Bus R X B Tap (%)
15 38 1 0.0010 0.0250 1.2000 0.00
16 30 11 0.0004 0.0043 2.0729 0.00
17 30 13 0.0004 0.0043 n.0729 0.00
18 13 14 0.0009 0.0101 2.1723 0.00
19 14 15 0.0018 0.0217 1.3660 0.00
20 15 16 0.0009 0.0094 2.1710 0.00
21 16 17 0.0007 0.0089 0.1342 0.00
22 16 19 0.0016 0.0195 2.3040 0.00
23 16 21 0.0008 0.0135 1.2548 0.00
24 16 24 0.0003 0.0059 0.0680 0.00
25 17 18 0.0007 0.0082 0.1319 0.00
26 17 27 0.0013 0.0173 0.3216 0.00
27 21 22 0.0008 0.0140 0.2565 0.00
28 22 23 0.0006 0.0096 0.1846 0.00
29 23 24 0.0022 0.0350 0.3610 0.00
30 25 26 0.0032 0.0323 0.5130 0.00
31 26 27 0.0014 0.0147 1.2396 0.00
32 26 28 0.0043 0.0474 1.7802 0.00
33 26 29 0.0057 0.0625 1.0290 0.00
34 28 29 0.0014 0.0151 1.2490 0.00
35 12 11 0.0016 0.0435 1.0000 -0.6
36 12 13 0.0016 0.0435 0.0000 0.60
37 35 2 0.0000 0.0250 0.0000 -7.0
38 30 3 0.0000 0.0200 0.0000 -7.0
39 19 4 0.0007 0.0142 0.0000 -7.0
40 20 5 0.0009 0.0180 1.0000 -0.9
41 22 6 0.0000 0.0143 0.0000 2.5
42 23 7 0.0005 0.0272 1.0000 0.00
43 25 8 0.0006 0.0232 0.0000 2.5
44 31 10 0.0000 0.0181 0.0000 2.5
45 29 9 0.0008 0.0156 0.0000 2.5
46 19 20 0.0007 0.0138 1.0000 6.00
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Bus Data:
Bus No. Voltage Generation Load

Mag. (pu) Ang.(deg) P (pu) Q (pu) P (pu) Q (pu)

1 1.0300 0.0000 10.0000 0.8804 11.0400 2.5000
2 0.9820 10.882 5.6330 2.0541 0.0920 0.0460
3 0.9831 12.667 6.5000 2.0578 0.0000 0.0000
4 0.9972 13.178 6.3200 1.0897 0.0000 0.0000
5 1.0123 11.739 5.0800 1.6700 0.0000 0.0000
6 1.0493 15.150 6.5000 2.1115 0.0000 0.0000
7 1.0635 17.843 5.6000 1.0046 0.0000 0.0000
8 1.0278 12.318 5.4000 0.0093 0.0000 0.0000
9 1.0265 17.583 8.3000 0.2278 0.0000 0.0000
10 1.0475 6.7000 2.6040 1.4535 0.0000 0.0000
11 1.0125 3.8500 0.0000 0.0000 0.0000 0.0000
12 0.9998 3.8410 0.0000 0.0000 0.0850 0.8880
13 1.0142 3.9610 0.0000 0.0000 0.0000 0.0000
14 1.0117 2.3080 0.0000 0.0000 0.0000 0.0000
15 1.0158 1.9200 0.0000 0.0000 3.2000 1.5300
16 1.0322 3.3370 0.0000 0.0000 3.2940 0.3230
17 1.0339 2.3510 0.0000 0.0000 0.0000 0.0000
18 1.0313 1.5150 0.0000 0.0000 1.5800 0.3000
19 1.0500 7.9610 0.0000 0.0000 0.0000 0.0000
20 0.9910 6.5490 0.0000 0.0000 6.8000 1.0300
21 1.0321 5.7420 0.0000 0.0000 2.7400 1.1500
22 1.0500 10.189 0.0000 0.0000 0.0000 0.0000
23 1.0450 9.9910 0.0000 0.0000 2.4750 0.8460
24 1.0377 3.4560 0.0000 0.0000 3.0860 -0.922
25 1.0575 5.5330 0.0000 0.0000 2.2400 0.4720
26 1.0521 4.2480 0.0000 0.0000 1.3900 0.1700
27 1.0379 2.2240 0.0000 0.0000 2.8100 0.7550
28 1.0501 7.7600 0.0000 0.0000 2.0600 0.2760
29 1.0500 10.519 0.0000 0.0000 2.8350 0.2690
30 1.0170 4.6700 0.0000 0.0000 0.0000 0.0000
31 1.0490 4.1800 0.0000 0.0000 0.0000 0.0000
32 1.0304 1.2810 0.0000 0.0000 3.2200 0.0240
33 1.0038 0.4210 0.0000 0.0000 5.0000 1.8400
34 1.0051 1.5720 0.0000 0.0000 0.0000 0.0000
35 1.0074 2.2650 0.0000 0.0000 0.0000 0.0000
36 0.9967 0.0700 0.0000 0.0000 2.3380 0.8400
37 0.9958 -0.433 0.0000 0.0000 5.2200 1.7600
38 1.0281 -0.217 0.0000 0.0000 0.0000 0.0000
39 1.0475 1.5690 0.0000 0.0000 0.0000 0.0000
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NOMENCLATURE

neural network input vector

synchronous generator input vector

weight vector associated with input units

weight vector associated with hidden units

output vector

net value

center vector of jth RBF unit

width of jth RBF unit

membership function

time-domain simulated output vector

network output vector

set of training patterns

No. of inputs

No. of hidden units

No. of output units

No. of nearest neighbor centers

No. of training patterns

target vector

error vector

auto-correlation function

cross-correlation function

unit impulse function

nonlinear function expansion of lagged inputs and outputs
network approximation of f;

lags of outputs

lags of inputs

learning rate

forgetting factor

desired value

torque angle

angular speed

synchronous speed

inertia constant

stator currents in d and q axis circuits respectively
terminal voltage in d and q axis circuits respectively
damper circuit currents in d and q axes respectively
flux linkages

field voltage and current respectively

transmission line resistance and reactance respectively
synchronous reactances in d and q axes

mutual reactances in d- and g-axis respectively
field winding resistance and self-reactance respectively
stator resistance

damper winding resistance and self-reactance in d-axis respectively



NG
=

o
51

QRO
o
e

anNprZ
&

3
3

<<Cc
E|
g

aﬁﬁf@“ﬂgéﬁ?@g
< w V:_U g

224

damper winding resistance and self-reactance in g-axis respectively
input mechanical and output electrical torques respectively

initial value of mechanical torque

deviation of mechanical torque

q-axis component of internal voltage behind transient reactance

d-axis component of internal voltage behind transient reactance
equivalent excitation voltage

damping coefficient

terminal and reference voltages respectively

infinite bus voltage

d-axis transient reactance
d-axis transient open circuit time constant
q-axis transient open circuit time constant

regulator gain and time constant respectively
PSS control signal

CPSS gain

CPSS time constants

washout time constant

first deravitive d/dt

active power

reactive power

proportional and integral gains of PI PSS respectively
transfer function

No. of fuzzy rules

acceleration

scaled acceleration

operating point in the phase plane
maximum value of stabilizing signal
minimum value of stabilizing signal
maximum value of the regulator voltage
minimum value of the regulator voltage
gain function

membership functions

acceleration scaling factor

No. of machines

ith generator

sampling period

performance index

local load conductance and susceptance respectively
governor gain

governor time constant

turbine time constant

deviation of valve opening position
artificial neural network

average percentage error
backpropagation neural network
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CPSS conventional power system stabilizer
FBFN fuzzy basis function network
GPSS genetic-based power system stabilizer

GFLPSS genetic-based fuzzy logic power system stabilizer
GRBPSS genetic rule-based power system stabilizer

MSE mean square error

OLS orthogonal least squares

RBFN radial basis function network

PI PSS proportional integral power system stabilizer
SPE sensitivity of power system stabilizer effect
pu per unit

PF power factor

VLSI very large scale integrated circuits

A/D analog to digital converter

D/A digital to analog converter

SvC static VAR compensators
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