2. Mathematical Models of Systems (cont.)

Example 3 Solution of a differential equation
Obtain the the response of the system represented by the differential equation:
$\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=2 r(t)$
Where the initial conditions are $y(0)=1, \frac{d y}{d t}(0)=0$, and $r(t)=1, t \geq 0$.

Solution

The Laplace transform yields
$\left[s^{2} Y(s)-s y(0)\right]+4[s Y(s)-y(0)]+3 Y(s)=2 R(s)$
$\left[s^{2} Y(s)-s\right]+4[s Y(s)-1]+3 Y(s)=2 \frac{1}{s}$
$Y(s)=\frac{s+4}{\left(s^{2}+4 s+3\right)}+\frac{2}{s\left(s^{2}+4 s+3\right)}$
Where $\left(s^{2}+4 s+3\right)=(s+1)(s+3)=0$ is the characteristic equation. Then the partial fraction expansion yields
$Y(S)=\left[\frac{\frac{3}{2}}{(S+1)}+\frac{-\frac{1}{2}}{(S+3)}\right]+\left[\frac{-1}{(S+1)}+\frac{\frac{1}{3}}{(S+3)}\right]+\frac{\frac{2}{3}}{S}$
Hence the response is $y(t)=\left[\frac{3}{2} \epsilon^{-t}--\frac{1}{2} \epsilon^{-3 t}\right]+\left[-\epsilon^{-t}+\frac{1}{3} \epsilon^{-3 t}\right]+\frac{2}{3}$
$y(t)=\frac{1}{2} \epsilon^{-t}-\frac{1}{6} \epsilon^{-3 t}+\frac{2}{3}$ and the steady-state response is $\lim _{t \rightarrow \infty} y(t)=\frac{2}{3}$
The response is shown in the figure below.

Drill Problem [to be submitted]

Simulate the above system using simulink and plot the response $y(t)$ for the following cases:

1. $y(0)=0, \frac{d y}{d t}(0)=0$, and $r(t)=1, t \geq 0$.
2. $y(0)=1, \frac{d y}{d t}(0)=0$, and $r(t)=0, t \geq 0$.
3. $y(0)=1, \frac{d y}{d t}(0)=0$, and $r(t)=1, t \geq 0$.

Comment on the results and show your simulink model.

Example 4

Find the transfer functions $\frac{V_{1}(s)}{R(s)}$ and $\frac{V_{2}(s)}{R(s)}$ for the given circuit

Solution

The transfer functions are obtained by writing the node equations, yielding
$C_{1} S V_{1}(s)+\frac{V_{1}(s)}{R_{2}}+\frac{V_{1}(s)-V_{2}(s)}{R_{1}}=R(s) ;$
$C_{2} S V_{2}(s)+\frac{V_{2}(S)}{S L}+\frac{V_{2}(s)-V_{1}(s)}{R_{1}}=0$;
or, in matrix form, we have
$\left[\begin{array}{cc}C_{1} s+\frac{1}{R_{2}}+\frac{1}{R_{1}} & -\frac{1}{R_{1}} \\ -\frac{1}{R 1} & s C_{2}+\frac{1}{s L}+\frac{1}{R_{1}}\end{array}\right]\left[\begin{array}{c}V_{1(s)} \\ V_{2(s)}\end{array}\right]=\left[\begin{array}{c}R(s) \\ 0\end{array}\right]$
$\frac{V_{1}(s)}{R(s)}=\frac{\left(s C_{2}+\frac{1}{s L}+\frac{1}{R_{1}}\right)}{\left(C_{1} s+\frac{1}{R_{2}}+\frac{1}{R_{1}}\right)\left(s C_{2}+\frac{1}{s L}+\frac{1}{R_{1}}\right)-\frac{1}{R_{1}^{2}}}$
$\frac{V_{2}(s)}{R(S)}=\frac{\left(\frac{1}{R_{1}}\right)}{\left(C_{1} S+\frac{1}{R_{2}}+\frac{1}{R_{1}}\right)\left(s C_{2}+\frac{1}{S L}+\frac{1}{R_{1}}\right)-\frac{1}{R_{1}^{2}}}$

