8. FREQUENCY RESPONSE METHODS

Concept

A very practical and important approach to the analysis and design of a system is the frequency response method.

Abstract

The frequency response of a system is defined as the steady-state response of the system to a sinusoidal input signal. For a linear system, the resulting output signal, as well as signals throughout the system, are sinusoidals of the same frequency in the steady state; they differ from the input wave form only in amplitude and phase angle.

Analytical Expression for Frequency Response

The transfer function of a system $G(s)$ can be described in the frequency domain by the relation

$$
G(j \omega)=\left.G(s)\right|_{s=j \omega}
$$

The transfer function $G(j \omega)$ can be represented by its real and imaginary parts

$$
\begin{aligned}
G(j \omega) & =\operatorname{Re}|G(j \omega)|+j \operatorname{Im}|G(j \omega)| \\
& =R(\omega)+j X(\omega)
\end{aligned}
$$

or alternatively by its magnitude and phase:
$G(j \omega)=|G(j \omega)| e^{j \phi(j \omega)}=|G(\omega)| \angle \phi(\omega)$
Where

$$
\phi(\omega)=\tan ^{-1} \frac{X(\omega)}{R(\omega)}, \text { and }|G(j \omega)|=\sqrt{|R(\omega)|^{2}+|X(\omega)|^{2}}
$$

Plotting Frequency Response

The frequency response of the system $G(j \omega)$ can be portrayed graphically in two ways:

- As a polar plot, where the phasor length is the magnitude $|G(\omega)|$, and the phasor angle is the phase $\phi(\omega)$. [or alternatively, the coordinates of the polar plot are the real part of $R(\omega)$, and the imaginary part $X(\omega)$.]
- As logarithmic plots, often called Bode plots, representing separately the magnitude and phase, as a function of frequency. The magnitude curve can be plotted in decibels (dB) vs. $\log \omega$, where $d B=20 \log |G(j \omega)|$. The phase curve is plotted as phase angle vs. $\log \omega$.

Two examples of polar plots are given next:
Example $1 \quad$ Frequency response of an RC filter
A simple RC filter us shown. The transfer function of this filter is
$G(s)=\frac{V_{2}(s)}{V_{1}(s)}=\frac{1}{R C s+1}$

The sinusoidal steady-state transfer function is

$$
\begin{aligned}
& G(j \omega)=\frac{1}{j \omega(R C)+1}=\frac{1}{j\left(\frac{\omega}{\omega_{1}}\right)+1} \quad ; \quad \omega_{1}=\frac{1}{R C} \\
& G(j \omega)=R(\omega)+j X(\omega)=\frac{1}{1+\left(\frac{\omega}{\omega_{1}}\right)^{2}}-\frac{j\left(\frac{\omega}{\omega_{1}}\right)}{1+\left(\frac{\omega}{\omega_{1}}\right)^{2}} \text { or }
\end{aligned}
$$

$$
G(j \omega)=|G(\omega)| \angle \phi(\omega)=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{1}}\right)^{2}}} \angle-\tan ^{-1}\left(\frac{\omega}{\omega_{1}}\right)
$$

The phase angle and the magnitude are readily calculated at the frequencies $\omega=0, \omega_{1}$, and ∞. The values are given in the table.

ω	0	ω_{1}	$+\infty$
$\|G(\omega)\|$	1	$\frac{1}{\sqrt{2}}$	0
$\phi(\omega)$	0°	-45°	-90°

Note that for $0<\omega<\infty,-90^{\circ}<\phi(\omega)<0^{\circ}$. This indicates that the entire polar plot lies in the fourth quadrant.

The polar plot for the RC filter is shown.

Example 2

Consider the transfer function
$G(S)=\frac{K}{S(\tau S+1)}$
The sinusoidal steady-state transfer function is
$G(j \omega)=\frac{K}{j \omega(j \omega \tau+1)}=\frac{K}{j \omega-\omega^{2} \tau}$
Then the magnitude and phase angle are written as
$|G(\omega)|=\frac{1}{\sqrt{\omega^{2}+\omega^{4} \tau^{2}}}$
$\phi(\omega)=-\tan ^{-1}\left(\frac{1}{-\omega \tau}\right)$

The phase angle and the magnitude are readily calculated at the frequencies $\omega=0, \omega=\frac{1}{\tau}$, and ∞. The values are given in the table.

ω	0	$\frac{1}{\tau}$	$+\infty$
$\|G(\omega)\|$	∞	$\frac{K \tau}{\sqrt{2}}$	0
$\phi(\omega)$	-90°	-135°	-180°

Note that for $0<\omega<\infty,-90^{\circ}>\phi(\omega)>-180^{\circ}$. This indicates that the entire polar plot lies in the third quadrant.

The polar plot for the transfer function is shown.

