7. THE ROOT LOCUS METHOD [CONT.]

MORE EXAMPLES....

Example 2

Plot the root locus for the characteristic equation of a system as $0<K<\infty$
$1+\frac{K}{s^{3}+3 s^{2}+2 s}=0$

Solution

Steps 1 and 2:

$$
1+K \frac{1}{S(S+1)(S+2)}=0
$$

Step 3:

We have

- 3 open-loop poles at $s=0, s=-1, s=-2$
- no open-loop zeros

We locate the poles as shown.

Step 5

The number of separate loci is equal to $n_{p}=3$
The number of loci branches proceeding to zeros at infinity is $n_{p}-n_{z}=3$
Step 6
The root loci are symmetrical with respect to the real axis
Step 7:
$n_{p}=3 ; n_{z}=0$

$$
\begin{aligned}
\sigma_{A} & =\frac{\sum_{j=1}^{n}\left(-p_{j}\right)-\sum_{i=1}^{M}\left(-z_{i}\right)}{n_{p}-n_{z}} \\
& =\frac{(0-1-2)}{3}=-1 \\
\phi_{A} & =\frac{(2 q+1)}{n_{p}-n_{z}} 180^{\circ}, q=0,1,2 \\
\phi_{A} & = \pm 60^{\circ}, 180^{\circ}
\end{aligned}
$$

Then the 3 asymptotes are drawn as shown.

Step 8:

To determine the imaginary axis crossing, we write the C.E.,
$s(s+1)(s+2)+K=0 \Rightarrow s^{3}+3 s^{2}+2 s+K=0$

s^{3}	1	2	0
s^{2}	3	K	
s	$\mathrm{~b}_{1}$	0	
s^{0}	K		
$b_{1}=\frac{6-K}{3}$			

The limiting value of the gain for stability is $K=6$
To find the points where the locus crosses the imaginary axis, we find the roots of the auxiliary equation,
$3 s^{2}+K=0 \Rightarrow 3 s^{2}+6=0 \Rightarrow s= \pm j \sqrt{2} \mathrm{rad} / s$

Step 9:

To determine the breakaway point [must be between $s=-1 \& s=0$], we have

$$
\begin{aligned}
& K=-\left(s^{3}+3 s^{2}+2 s\right) \\
& \frac{d K}{d s}=-\left(3 s^{2}+6 s+2\right)=0 \rightarrow s^{2}+2 s+\frac{2}{3}=0
\end{aligned}
$$

The roots are $-0.423 ;-1.577$
Step 10:
To determine the angle of departure at the complex pole
Not Applicable
Step 11:
To determine the gain at the breakaway point
$\left|K \frac{1}{s(s+1)(s+2)}\right|_{s=-0.423}=1$
$K_{b a}=03.85$

The complete root locus plot is shown

Breakaway point: $s=-0.423$

Example 3

Plot the root locus for the characteristic equation of a system as $0<K<\infty$
$1+\frac{K(s+2)}{s^{2}+2 s+3}=0$

Solution

Steps 1 and 2:
$1+K \frac{s+2}{(s+1 \pm j \sqrt{2})}=0$
Step 3:
We have

- 2 open-loop poles at

$$
s=-1+j \sqrt{2}, s=-1-j \sqrt{2}
$$

- one open-loop zero $s=-2$

We locate the poles as shown.
Step 4:
Locate the root locus segments that lie on the real axis as shown. A segment of the root locus exists on the real axis between $s=-2$ and $s=-\infty$.

Step 5
The number of separate loci is equal to $n_{p}=2$
The number of loci branches proceeding to zeros at infinity is $n_{p}-n_{z}=2-1=1$

Step 6
The root loci are symmetrical with respect to the real axis
Step 7:
$n_{p}=2 ; n_{z}=1$
$\sigma_{A}=\frac{\sum_{j=1}^{n}\left(-p_{j}\right)-\sum_{i=1}^{M}\left(-z_{i}\right)}{n_{p}-n_{z}}$

$$
=\frac{(-1-1)-(-2)}{2-1}=0
$$

$\phi_{A}=\frac{(2 q+1)}{n_{p}-n_{z}} 180^{\circ}, q=0$
$\phi_{A}=180^{\circ}$

Step 8:
To determine the imaginary axis crossing (if any), we write the C.E.,

\[

\]

It is clear that the root locus does not cross the iamginary axis for $K>0$. Step 9:

To determine the breakaway point [must be between $s=-2 \& s=-\infty$], we have
$K=-\frac{\left(s^{2}+2 s+3\right)}{s+2}$
$\frac{d K}{d s}=\left(s^{2}+4 s+1\right)=0$
The roots are $-3.73 ;-0.27$
The breakaway point is $s=-3.73$
Step 10:
To determine the angle of departure at the complex pole
$\tan ^{-1}\left(\frac{\sqrt{2}}{1}\right)-\left(\theta_{d}+90^{\circ}\right)=-180^{\circ}$
$54.7^{\circ}-\left(\theta_{d}+90^{\circ}\right)=-180^{\circ}$

The complete root locus plot is shown

Breakaway point: $s=-3.73$

