7. THE ROOT LOCUS METHOD [CONT.]

Example 1

Plot the root locus for the characteristic equation of a system as $0<K<\infty$
$1+\frac{K}{s^{4}+12 s^{3}+64 s^{2}+128 s}=0$

Solution

Steps 1 and 2:

$$
1+K \frac{1}{s(s+4)(s+4 \pm j 4)}=0
$$

Step 3:
We have

- 4 open-loop poles at $s=0, s=-4, s=-4+j 4 \& s=-4-j 4$
- no open-loop zeros

We locate the poles as shown.
Step 4:
Locate the root locus segments that lie on the real axis as shown. A segment of the root locus exists on the real axis between $s=0$ and $s=-4$.

Step 5
The number of separate loci is equal to $n_{p}=4$
The number of loci branches proceeding to zeros at infinity is $n_{p}-n_{z}=4$
Step 6
The root loci are symmetrical with respect to the real axis
Step 7:
$n_{p}=4 ; n_{z}=0$
$\sigma_{A}=\frac{\sum_{j=1}^{n}\left(-p_{j}\right)-\sum_{i=1}^{M}\left(-z_{i}\right)}{n_{p}-n_{z}}$ $=\frac{(0-4-4-4))}{4}=-3$
$\phi_{A}=\frac{(2 q+1)}{n_{p}-n_{z}} 180^{\circ}, q=0,1,2,3$
$\phi_{A}= \pm 45^{\circ}, \pm 135^{\circ}$
Then the asymptotes are drawn as shown.

Step 8:
To determine the imaginary axis crossing, we write the C.E.,

$$
s(s+4)(s+4 \pm j 4)+K=0 \Rightarrow s^{4}+12 s^{3}+64 s^{2}+128 s+K=0
$$

s^{4}	1	64	K
s^{3}	12	128	0
s^{2}	$\mathrm{~b}_{1}$	K	
s	c_{1}	0	
s^{0}	K		

$b_{1}=\frac{12 \times 64-128}{12}=53.33 ; c_{1}=\frac{53.33 \times 128-12 K}{53.33}$
The limiting value of the gain for stability is $K=\frac{53.33 \times 128}{12}=568.89$
To find the points where the locus crosses the imaginary axis, we find the roots of the auxiliary equation,
$53.33 s^{2}+568.89=0 \Rightarrow s= \pm j \sqrt{\frac{568.89}{53.33}}=j 3.26$
Step 9:
To determine the breakaway point [must be between $s=-4 \& s=0$], we have

$$
\begin{aligned}
& K=-\left(s^{4}+12 s^{3}+64 s^{2}+128 s\right) \\
& \frac{d K}{d s}=-\left(4 s^{3}+36 s^{2}+128 s+128\right)=0 \rightarrow s^{3}+9 s^{2}+32 s+32=0
\end{aligned}
$$

Step 10:
To determine the angle of departure at the complex pole
$-\left(\theta_{d}+90^{\circ}+90^{\circ}+135^{\circ}\right)=-180^{\circ}$
$\theta_{d}=-135^{\circ}$

$K_{b a}=83.57$

The complete root locus plot is shown

