7. THE ROOT LOCUS METHOD [CONT.]

Step 7:

The loci proceed to the zeros at infinity along linear asymptotes centered at σ_{A} on the real axis, and with angles ϕ_{A}. The number of loci branches that end at zeros at infinity is equal to $n_{p}-n_{z}$.

$$
\begin{aligned}
& \sigma_{A}=\frac{\sum_{j=1}^{n}\left(-p_{j}\right)-\sum_{i=1}^{M}\left(-z_{i}\right)}{n_{p}-n_{z}} ; \\
& \phi_{A}=\frac{(2 q+1)}{n_{p}-n_{z}} 180^{\circ}, q=0,1,2, \ldots\left(n_{p}-n_{z}-1\right)
\end{aligned}
$$

Two examples will further illustrate the process of utilizing the asymptotes

Example 1

$n_{p}=2 ; n_{z}=0$
$\sigma_{A}=\frac{\sum_{j=1}^{n}\left(-p_{j}\right)-\sum_{i=1}^{M}\left(-z_{i}\right)}{n_{p}-n_{z}}=\frac{(0-2)}{2}=-1$

$\phi_{A}=\frac{(2 q+1)}{n_{p}-n_{z}} 180^{\circ}, q=0,1$
$\phi_{A}= \pm 90^{\circ}$

Example 2

Steps 1 and 2:

$$
1+K \frac{(s+1)}{s(s+2)(s+4)^{2}}=0
$$

Step 3:
We have

- 4 open-loop poles at $s=0, s=-2, s=-4 \& s=-4$
- 1 open-loop zero at $s=-1$

We locate the poles and zeros as shown.

Step 4:

Locate the root locus segments that lie on the real axis

Step 5

The number of separate loci is equal to $n_{p}=4$
The number of loci branches proceeding to zeros at infinity is $n_{p}-n_{z}=3$
Step 7:

$$
n_{p}=4 ; n_{z}=1
$$

$$
\begin{aligned}
\sigma_{A} & =\frac{\sum_{j=1}^{n}\left(-p_{j}\right)-\sum_{i=1}^{M}\left(-z_{i}\right)}{n_{p}-n_{z}} \\
& =\frac{(0-2-4-4)-(-1)}{3}=-3
\end{aligned}
$$

$$
\phi_{A}=\frac{(2 q+1)}{n_{p}-n_{z}} 180^{\circ}, q=0,1,2
$$

$$
\phi_{A}= \pm 60^{\circ},-180^{\circ}
$$

We now return to developing the remaining steps.

Step 8:

Determine the point at which the locus crosses the imaginary axis (if it is applicable). You may use one of the following methods:

O Routh-Hurwitz Criterion. The roots of the auxiliary equation determine the imaginary-axis crossover points.

O Let $s=j \omega$ in the characteristic equation. This will result in two algebraic equations that will yield the imaginary-axis crossover point, and the relevant gain.

Step 9:

Determine the breakaway and breakin points on the real axis (if any). The root locus leaves (enters) the real axis at a breakaway point (breakin point).

The breakaway and breakin points are obtained by solving for the roots of the equation:
$\frac{d K}{d s}=0$

An example will further illustrate step 9.

Example

$$
\begin{aligned}
& 1+K \frac{(s+1)}{s(s+2)(s+3)}=0 \\
& K=\frac{-s(s+2)(s+3)}{(s+1)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d K}{d s}=0 \\
& s(s+2)(s+3)=(s+1)\left(3 s^{2}+10 s+6\right) \\
& s^{3}+8 s^{2}+5 s+3=0
\end{aligned}
$$

Roots are at: $-2.47,-0.767 \pm j 0.793$
Breakaway point is $s=-2.47$

Step 10:

Determine the angle of departure (arrival) of the locus from (to) a complex pole (zero), using the angle criterion.

θ_{d} angle of departure
\angle zeros $-\angle$ poles $-180^{\circ} \Rightarrow \theta_{1}-\left(\theta_{d}+\theta_{3}+\theta_{2}\right)=-180^{\circ}$

Step 11:

To prove that a point is on the root locus, the angle condition must be satisfied:
$\angle G(s) H(s)=-180^{\circ}$
Consider point P

$$
\begin{aligned}
\angle G(s) H(s) & =\angle \frac{K}{s(s+1)} \\
& =-[\angle s+\angle s+1)] \\
& =-\left[\theta_{1}+\theta_{2}\right]=\text { always }-180^{\circ}
\end{aligned}
$$

Hence, the point P is on the root locus.

Step 12:

To find the parameter value K_{x} at a specified root s_{x}, use the magnitude condition.

Consider point q on the root locus. It is required to find the gain at that point. The coordinates of point q are : $-0.5+j 2$

$$
\begin{aligned}
& \left|\frac{K}{s(s+1)}\right|_{s=-0.5+j 2}=1 \\
& \left|\frac{K}{(-0.5+j 2)(-0.5+j 2+1)}\right|=1 \\
& K=\frac{17}{4}
\end{aligned}
$$

We are now going to illustrate the use of the twelve steps in some examples.

