7. THE ROOT LOCUS METHOD [CONT.]

The Root Locus Procedure

An orderly procedure that facilitates the rapid sketching of the root locus will be developed. The procedure comprises twelve steps.

Step 1:

Write the characteristic equation as
$1+F(s)=0$
and rearrange the equation, if necessary, so that the parameter of interest, K, appears as the multiplying factor in the form
$1+K P(s)=0$

Step 2:

Factor $P(s)$, if necessary, and write the polynomial in the form of poles and zeros as follows:
$1+K \frac{\prod_{i=1}^{M}\left(s+z_{i}\right)}{\prod_{j=1}^{n}\left(s+p_{j}\right)}=0 \Rightarrow \prod_{j=1}^{n}\left(s+p_{j}\right)+K \prod_{i=1}^{M}\left(s+z_{i}\right)=0$

STEP 3:

Locate the open-loop poles and zeros on the s-plane. We are usually interested in determining the locus of roots for $0<K<\infty$.

- Root locus BEGINS at the open-loop poles ($K=0$)
- Root locus ENDS at the open-loop zeros ($K=\infty$)

Step 4:

Locate the segments of the real axis that are root loci.

- Root locus on the real axis always lies in a section of the real axis to the left of an odd number of poles and zeros.

These four useful steps will now be illustrated by a suitable examples.

Example

Step 1:

$$
1+K \frac{\left(\frac{1}{2} s+1\right)}{s\left(\frac{1}{4} s+1\right)}=0
$$

Step 2:
$1+2 K \frac{(S+2)}{S(S+4)}=0$
Step 3:
We have

- 2 open-loop poles at $s=0 \& s=-4$
- 1 open-loop zero at $s=-2$

We locate the poles and zeros as

shown.
Step 4:
Locate the root locus segments that lie on the real axis

Example

Step 1:

$$
1+\frac{1}{s(S+T)}=0 \rightarrow s^{2}+s T+1=0
$$

Step 2:
$s T+\left(1+s^{2}\right)=0 \rightarrow 1+\frac{s T}{s^{2}+1}=0 \rightarrow 1+\frac{s T}{(s+j 1)(s-j 1)}$
Step 3:

We have

- 2 open-loop poles at $s=j \& s=-j$
- one open-loop zero at $s=0$

We locate the poles and zeros as shown.

Step 4:
Locate the root locus segments that lie on the real axis

We now return to developing the remaining steps.

Step 5:

- The number of separate loci is equal to the number of open-loop poles.
- The number of loci going to ∞ is equal to the number of open-loop poles $\left(n_{p}\right)$ - the number of open-loop zeros $\left(n_{z}\right)$

Step 6:

The root loci must be symmetrical with respect to the horizontal real axis

