5. THE PERFORMANCE OF FEEDBACK CONTROL SYSTEMS

Evaluation of T_{p}, P.o., T_{R}, $T_{\text {sfor }}$ Underdamped second-order Systems

Let us consider a generalized single loop second order system.
The closed-loop output is
$Y(S)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}} R(s)$
With a unit step input, we
 obtain
$Y(s)=\frac{\omega_{n}^{2}}{s\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}=\frac{\omega_{n}^{2}}{s\left(s+\zeta \omega_{n} \pm j_{n} \sqrt{1-\zeta^{2}}\right)}$
$y(t)=1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t+\theta\right) ; \theta=\cos ^{-1} \zeta$

Evaluation of T_{p}

T_{p} is found by differentiating $y(t)$ and finding the first zero crossing after $t=0$. This task is simplified by differentiating in the frequency domain.
Assuming zero initial conditions, we get
$\mathcal{L}^{-1}[\dot{y}(t)]=s Y(S)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{\left(S+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)}$
$\mathcal{L}^{-1}[\dot{\boldsymbol{y}}(t)]=\frac{\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} \omega_{n} \sqrt{1-\zeta^{2}}}{\left(\boldsymbol{S}+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)}$
Therefore,
$\dot{y}(t)=\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \omega_{n} \sqrt{1-\zeta^{2}} t$
Setting the derivative equal to zero yields
$\omega_{n} \sqrt{1-\zeta^{2}} t=n \pi ; \quad \rightarrow t=\frac{\pi n}{\omega_{n} \sqrt{1-\zeta^{2}}} n=0,1,2,3, \ldots$
Each value of n yields the time for local maxima or minima. The first peak, which occurs at the peak time, T_{p}, is found by Letting $n=1$:
$T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}$
Notice that T_{p} is a function of ζ and ω_{n}

Evaluation of P.O.

The peak response $M_{p_{t}}$ is found by evaluating $y(t)$ at the peak time T_{p}.
$M_{p_{t}}=1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}} \sin (\pi+\theta)=1+e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}}$
Therefore, The percent overshoot is
P.O. $=e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}} 100$

Notice that P.O. is a function only of ζ

The inverse equation allows one to find ζ given P.O.
$\zeta=\frac{-\ln \left(\frac{P . O .}{100}\right)}{\sqrt{\pi^{2}+\ln ^{2}\left(\frac{P . O .}{100}\right)}}$
The percent overshoot and the normalized peak time, $\omega_{n} T_{p}$, versus the damping ration is shown in the figure.

Evaluation of T_{s}

The settling time is the time required for the response $y(t)$ to reach and stay within a specified absolute percentage δ of the final value. Using a value of $\delta=2 \%$, the settling time occurs when
$1+\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} T_{s}}=1.02 \rightarrow \frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} T_{s}}=0.02 \rightarrow T_{s}=-\frac{\ln \left(0.02 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{n}}$
the above equation can be approximated to

$$
e^{-\zeta \omega_{n} T_{s}}<0.02 \Rightarrow \zeta \omega_{n} T_{s}=4
$$

$T_{s}=\frac{4}{\zeta \omega_{n}}$

The settling time for the 2% criterion is approximately four time constants $\left(\tau=\frac{1}{\zeta \omega_{n}}\right)$.

Evaluation of T_{r}

An analytical expression for the rise time is difficult to obtain. However, using a computer, we solve the equation of $y(t)$ for the values of $\omega_{n} t$ that yield $y(t)=0.1$ and $y(t)=0.9$. Subtracting the two values of $\omega_{n} t$ yields the normalized rise time as shown in the figure. We can utilize the linear approximation:

$T_{r}=\frac{2.16 \zeta+0.60}{\omega_{n}}$

$$
\text { Notice that } T_{r} \text { is a function of } \zeta \text { and } \omega_{n}
$$

[Accurate for $0.3 \leq \zeta \leq 0.8$]

Effects of ω_{n}
For a given ζ, the response is faster for larger ω_{n}, as shown in the figure

Why is the overshoot the same?

Find T_{p}, T_{r}, T_{s} and P.O. from graphs and from equations. Any comments?

Effects of ζ

For a given ω_{n}, the response is faster for lower ζ, as shown in the figure.

Find T_{p}, T_{r}, T_{s} and P.O.from graphs and from equations. Any comments?

Skill-Assessment Exercise

Find $\zeta_{,} \omega_{n}, T_{p}, T_{r}, T_{s}$, and P.O.for a system whose transfer function is
$G(s)=\frac{361}{s^{2}+16 s+361}$
Answers:
$\zeta=0.421, \omega_{n}=19 \mathrm{rad} / \mathrm{s}, T_{p}=0.182 \mathrm{~s}, T_{r}=0.079 \mathrm{~s}, T_{s}=0=.5 \mathrm{~s}, P . O .=23 \%$
Plot the step response using MATLAB and check the accuracy of the results.

Drill Problem [Due on Wednesday 30 October, 2002]
Consider the servo system shown.

1. Design the system to have the fastest response without overshoot, and a settling time of 0.25 s .

2. Simulate the system to verify the design.
