
5. THE PERFORMANCE OF FEEDBACK CONTROL SYSTEMS

PERFORMANCE OF A 2ND ORDER SYSTEMS

Let us consider a generalized single loop second order system and
determine its response to a
unit-step input.

The closed-loop output is 

Y(s) = n
2

s2 +2 ns + n
2 R(s)

With a unit step input, we
obtain 

Y(s) = n
2

s (s2 +2 ns + n
2) = n

2

s s + n ! n 2 −1

Where

Natural frequency (the frequency of oscillation of the systemn

without damping.

Damping ratio

A second-order system exhibits a wide range of responses based on the 
values of the parameters We will now explain each response andand n.
show how we can directly use the poles to determine the nature of the
response. 

Case 1 Undamped Response  ( )= 0

Y(s) = n
2

s (s2 + n
2) = n

2

s (s ! j n)

Poles: 2 imaginary at !j n

y(t) = 1 −cos( nt)
 

Undamped sinusoid with radian frequency equal to the imaginary part of
the poles.
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Case 2 Underdamped Response ( )0 < < 1

Y(s) = n
2

s (s2 +2 ns + n
2) = n

2

s s + n ! j n 1 − 2

Poles: 2 complex at − n ! j n 1 − 2

 ; y(t) = 1 − 1
1 − 2

e− nt sin( n 1 − 2 t + ) = cos−1

Damped Sinusoid with an exponential envelope whose time constant is
equal to the reciprocal of the pole’s real part. The radian frequency of the
sinusoid , is equal to the  imaginary part of the pole. 

Case 3 Critically damped Response ( )= 1

Y(s) = n
2

s (s2 +2 ns + n
2) = n

2

s (s + n)2

Poles: 2 real  at − n

 y(t) = 1 −e− nt(1 + nt)

One term is an exponential whose time
constant is equal to the reciprocal of the pole location. Another term is
the product of time, t, and an exponential with time constant equal to the
reciprocal of the pole location.   

Case 4 Overdamped Response ( )> 1

Y(s) = n
2

s (s2 +2 ns + n
2) = n

2

s s + n ! n 2 −1

Poles: 2 real at − n ! n
2 −1

 ; y(t) = 1 + n

2 1 − 2
( e

−s1t

s1
− e−s2t

s2
)

  s1 = n + n
2 −1 ,s2 = n − n

2 −1

Two exponential terms with time constants equal to the reciprocal of the
pole locations  
The step responses for the four cases of damping are superimposed in the
figure shown. Notice that the critically damped case is the division
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between the overdamped cases and the underdamped cases and is the
fastest response without overshoot.  

TRANSIENT-RESPONSE SPECIFICATIONS

The transient response of a practical control system often exhibits
damped oscillations before reaching steady-state (i.e. underdamped
response). In specifying the transient response characteristics of a control
system to a unit-step input, it is common to specify the following
standard performance measures:

RISE TIME Tr

Ti me required for the response to rise from 10 to 90% or 0 to 100% of
its final value. For underdamped second-order systems, the 0 to 100%
rise time is normally used. For overdamped systems, the 10 to 90% rise
time is commonly used.

PEAK TIME Tp

Time required for the response to reach the first peak of the overshoot.

PERCENT OVERSHOOT P.O.
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The peak value of the time response  measured from the final value Mpt fv

of the response . Normally  is the magnitude of the input, but manyfv

systems have a final value different from the desired input magnitude. 

P.O. =
Mpt − fv

fv
100%

SETTLING TIME Ts

Time required for the response to settle within a certain percentage  of
the input amplitude. (Usually 2% or 5%). We seek to determine the time,

for which the response remains within 2% of the final value. ThisTs,
occurs approximately when 

e− nTs < 0.02 e nTs = 4 d Ts = 4
n

Hence we will define the settling time as four time constants (that is 
) of the dominant roots of the Characteristic equation. = 1

n

The above performance measures are shown in the figure.
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