3. STATE VARIABLE MODELS (cont.)

Alternative Signal-Flow Graph Models (cont.)
Diagonal Form

Consider the transfer function:

$$
\frac{Y(s)}{R(s)}=\frac{30(s+1)}{s^{3}+9 s^{2}+26 s+24}=\frac{30(s+1)}{(s+5)(s+2)(s+3)}
$$

It is clear that the transient response of the system has three modes, These modes are indicated by the partial fraction expansion as

$$
\frac{Y(s)}{R(s)}=\frac{k_{1}}{(s+5)}+\frac{k_{2}}{(s+2)}+\frac{k_{3}}{(s+3)}
$$

The coefficients k_{1}, k_{2}, and k_{3} are called residues and are evaluated by multiplying through by the denominator factor of $\frac{30(s+1)}{(s+5)(s+2)(s+3)}$ corresponding to k_{i} and setting s equal to the root.

Evaluating k_{1}, k_{2}, and k_{3} we have
$k_{1}=\left.\left[(s+5) \frac{30(s+1)}{(s+5)(s+2)(s+3)}\right]\right|_{s=-5}=-20$
$k_{2}=\left.\left[(s+2) \frac{30(s+1)}{(s+5)(s+2)(s+3)}\right]\right|_{s=-2}=-10$
$k_{3}=\left.\left[(s+3) \frac{30(s+1)}{(s+5)(s+2)(s+3)}\right]\right|_{s=-3}=30$

$$
\frac{Y(s)}{R(s)}=\frac{-20}{(s+5)}+\frac{-10}{(s+2)}+\frac{30}{(s+3)}
$$

Using the above SFG to derive the set of first-order differential equations, we obtain:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-5 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] u(t)} \\
& y=\left[\begin{array}{lll}
-20 & -10 & 30
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

The Transfer function from State Equations
Given the state variable equations, we can obtain the transfer function using a signal-flow graph model and applying Mason's rule. We will now derive a formula for the transfer function of a single-input, single-output system.

Given
$\dot{\boldsymbol{x}}=A \boldsymbol{x}+B u \quad ; \quad y=C \boldsymbol{x}[D$ is assumed $=0]$
The Laplace transforms of the above equations are
$s \boldsymbol{X}(s)=A \boldsymbol{X}(s)+B U(s) ; Y(s)=C X(s)$
$(s I-A) X(s)=B U(s)$

Note that we do not include initial conditions, since we seek the transfer function.
$X(s)=(s I-A)^{-1} B U(s)$
$Y(s)=C X(s)=C(s I-A)^{-1} B U(s)$
$Y(s)=C \Phi(s) B U(s)$
Therefore the transfer function is $G(s)=C \Phi(s) B$
If $D \neq 0$, the transfer function is $G(s)=C(s I-A)^{-1} B+D=C \Phi(s) B+D$

Example

Determine the transfer function of the system described by:
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & \frac{-1}{C} \\ \frac{1}{L} & \frac{-R}{L}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}\frac{1}{C} \\ 0\end{array}\right] u(t) ; y(t)=\left[\begin{array}{ll}0 & R\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

Solution

$[s I-A]=\left[\begin{array}{cc}s & \frac{1}{C} \\ \frac{-1}{L} & \left(s+\frac{R}{L}\right)\end{array}\right] ; \Delta(s)=|s I-A|=\left|\begin{array}{cc}s & \frac{1}{C} \\ \frac{-1}{L} & \left(s+\frac{R}{L}\right)\end{array}\right|=s^{2}+\frac{R}{L} s+\frac{1}{L C}$
$\Phi(s)=[s I-A]^{-1}=\left[\begin{array}{cc}s & \frac{1}{C} \\ \frac{-1}{L} & \left(s+\frac{R}{L}\right)\end{array}\right]^{-1}=\frac{1}{\Delta(s)}\left[\begin{array}{cc}\left(s+\frac{R}{L}\right) & \frac{-1}{C} \\ \frac{1}{L} & s\end{array}\right]$
Then the transfer function is
$\frac{Y(s)}{U(S)}=\left[\begin{array}{ll}0 & R\end{array}\right] \frac{1}{\Delta(s)}\left[\begin{array}{cc}\left(s+\frac{R}{L}\right) & \frac{-1}{C} \\ \frac{1}{L} & s\end{array}\right]\left[\begin{array}{c}\frac{1}{C} \\ 0\end{array}\right]$
$\frac{Y(s)}{U(s)}=\frac{\frac{R}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}$

Evaluation of the State Transition Matrix

For higher order systems, evaluating $\Phi(s)$ using the formula $\Phi(s)=[s I-A]^{-1}$ is generally inconvenient. The usefulness of the signal-flow graph state model for obtaining the state transition matrix is highlighted.

Consider the system $\quad \dot{\boldsymbol{x}}=A \boldsymbol{x}+B u$;
The solution for the above system, when $u(t)=0$, is

$$
\boldsymbol{x}(t)=\Phi(t) \boldsymbol{x}(0)
$$

Taking the Laplace transformation of the above equation, we have $\boldsymbol{X}(s)=\Phi(s) \boldsymbol{x}(0)$

Therefore we can evaluate the Laplace transform of the transition matrix from the signal-flow graph by determining the relation between a state variable $X_{i}(S)$ and the state initial conditions $\left[x_{1}(0), x_{2}(0) \ldots x_{n}(0)\right]$, using Mason's gain formula.

Thus for a second-order system, we would have
$X_{1}(s)=\varphi_{11}(s) X_{1}(0)+\varphi_{12}(s) X_{2}(0)$
$X_{2}(s)=\varphi_{21}(s) X_{1}(0)+\varphi_{22}(s) X_{2}(0)$
Note that all the elements of the state transition Matrix $\varphi_{i j}(S)$, can be obtained by evaluating the individual relationships between $X_{i}(S)$ and $x_{j}(0)$ from the state model flow graph.

How to show Initial Conditions on the SFG

Consider the equation $\dot{x}_{1}=x 2 ; x_{1}(0)$
Taking Laplace transform yields $s X_{1}(s)-X_{1}(0)=X_{2}(s)$
The above equation becomes $X_{1}(s)=s^{-1} X_{1}(0)+s^{-1} X_{2}(s)$, which is algebraic and can be represented by a signal flow
 graph as shown.

Note that the initial condition of the state x_{1} appears as an input to the node representing the state with a branch gain of s^{-1}.

Example

Determine $\Phi(s)$ for the system given by $A=\left[\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right], B=\left[\begin{array}{l}2 \\ 0\end{array}\right], C=\left[\begin{array}{ll}0 & 3\end{array}\right]$ using two different methods.

Solution

(1)
$[s I-A]=\left[\begin{array}{cc}s & 2 \\ -1 & (s+3)\end{array}\right] ; \Delta(s)=|s I-A|=\left|\begin{array}{cc}s & 2 \\ -1 & (s+3)\end{array}\right|=s^{2}+3 s+2$
$\Phi(s)=[s I-A]^{-1}=\left[\begin{array}{cc}s & 2 \\ -1 & (s+3)\end{array}\right]^{-1}=\frac{1}{\left(s^{2}+3 s+2\right)}\left[\begin{array}{cc}(s+3) & -2 \\ 1 & s\end{array}\right]$
(2) Draw a signal-flow graph showing all initial conditions

To obtain $\Phi(s)$, set $U(s)=0$, and redraw the SFG without the input and output nodes because they are not involved in the evaluation of $\Phi(s)$.

Recall that

$X_{1}(s)=\varphi_{11}(s) X_{1}(0)+\varphi_{12}(s) X_{2}(0)$
$X_{2}(s)=\varphi_{21}(s) x_{1}(0)+\varphi_{22}(s) x_{2}(0)$
Where $\Phi(s)=\left[\begin{array}{ll}\varphi_{11}(s) & \varphi_{12}(s) \\ \varphi_{21}(s) & \varphi_{22}(s)\end{array}\right]$
Using Mason's gain formula, we obtain
$\varphi_{11}(s)=\left.\frac{X_{1}(s)}{X_{1}(0)}\right|_{X_{2}(0)=0}=\frac{\frac{1}{S}\left(1+3 s^{-1}\right)}{1+3 s^{-1}+2 s^{-2}}=\frac{s+3}{\left(s^{2}+3 s+2\right)}$
$\varphi_{12}(s)=\left.\frac{X_{1}(s)}{X_{2}(0)}\right|_{x_{1}(0)=0}=\frac{\frac{1}{S}\left(-2 s^{-1}\right)}{1+3 s^{-1}+2 s^{-2}}=\frac{-2}{\left(s^{2}+3 s+2\right)}$
$\varphi_{21}(s)=\left.\frac{X_{2}(s)}{X_{1}(0)}\right|_{x_{2}(0)=0}=\frac{\frac{1}{s}\left(s^{-1}\right)}{1+3 s^{-1}+2 s^{-2}}=\frac{1}{\left(s^{2}+3 s+2\right)}$
$\varphi_{22}(s)=\left.\frac{X_{2}(s)}{X_{2}(0)}\right|_{X_{1}(0)=0}=\frac{\frac{1}{s}(1)}{1+3 s^{-1}+2 s^{-2}}=\frac{s}{\left(s^{2}+3 s+2\right)}$
Hence
$\Phi(s)=\left[\begin{array}{cc}\frac{s+3}{\left(s^{2}+3 s+2\right)} & \frac{-2}{\left(s^{2}+3 s+2\right)} \\ \frac{1}{\left(s^{2}+3 s+2\right)} & \frac{s}{\left(s^{2}+3 s+2\right)}\end{array}\right]$

Comments

- We can now find $\Phi(t)$ if we wish
$\Phi(t)=\mathcal{L}^{-1} \Phi(s)=\left[\begin{array}{cc}\left(2 e^{-t}-e^{-2 t}\right) & \left(-2 e^{-t}+2 e^{-2 t}\right) \\ \left(e^{-t}-e^{-2 t}\right) & \left(-e^{-t}+2 e^{-2 t}\right)\end{array}\right]$
- We can also find the states and the output for any initial conditions. For example when $x_{1}(0)=x_{2}(0)=1$ and $u(t)=0$, we have

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\Phi(t)\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{cc}
\left(2 e^{-t}-e^{-2 t}\right) & \left(-2 e^{-t}+2 e^{-2 t}\right) \\
\left(e^{-t}-e^{-2 t}\right) & \left(-e^{-t}+2 e^{-2 t}\right)
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
e^{-2 t} \\
e^{-2 t}
\end{array}\right]
$$

