
3. STATE VARIABLE MODELS (cont.)

ALTERNATIVE SIGNAL-FLOW GRAPH MODELS (CONT.)

Diagonal Form

Consider the transfer function:

Y(s)
R(s) =

30(s +1)
s3 +9s2 +26s +24 =

30(s +1)
(s +5)(s +2)(s +3)

It is clear that the transient response of the system has three modes,
These modes are indicated by the partial fraction expansion as 

Y(s)
R(s) = k1

(s +5) + k2
(s +2) + k3

(s +3)

The coefficients  are called residues and are evaluated byk1,k2,and k3

multiplying  through by the denominator factor of 
30(s +1)

(s +5)(s +2)(s +3)
corresponding to  and setting s equal to the root.ki

Evaluating  we havek1,k2,and k3

k1 = (s +5)
30(s +1)

(s +5)(s +2)(s +3) s=−5
= −20

k2 = (s +2)
30(s +1)

(s +5)(s +2)(s +3) s=−2
= −10

k3 = (s +3)
30(s +1)

(s +5)(s +2)(s +3) s=−3
= 30
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Y(s)
R(s) = −20

(s +5) + −10
(s +2) + 30

(s +3)
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Using the above SFG to derive the set of first-order differential equations,
we obtain:

*x1
*x2
*x3

=
−5 0 0
0 −2 0
0 0 −3

x1

x2

x3

+
1
1
1

u(t)

 y = −20 −10 30
x1

x2

x3

THE TRANSFER FUNCTION FROM STATE EQUATIONS

Given the state variable equations, we can obtain the transfer function
using a signal-flow graph model and applying Mason’s rule. We will now
derive a formula for the transfer function of a single-input, single-output
system. 

Given

   ;   [ is assumed ]*x= Ax+Bu y = Cx D = 0

The Laplace transforms of the above equations are

sX(s) = AX(s) +BU(s) ;Y(s) = CX(s)

(sI −A)X(s) = BU(s)

X(s) = (sI −A)−1BU(s)

Y(s) = CX(s) = C(sI −A)−1BU(s)

Y(s) = C (s)BU(s)

Therefore the transfer function is G(s) =C (s)B

If , the transfer function is D ! 0 G(s) = C(sI−A)−1B+D = C (s)B+D

Example

Determine the transfer function of the system described by:

*x1
*x2

=
0 −1

C
1
L

−R
L

x1

x2
+

1
C
0

u(t) ; y(t) = 0 R
x1

x2
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Note that we do not include initial
conditions, since we seek the
transfer function.



Solution

[sI −A] =
s 1

C
−1
L s + R

L
; (s) = sI −A =

s 1
C

−1
L s + R

L
= s2 + R

L s + 1
LC

(s) = [sI −A]−1 =
s 1

C
−1
L s + R

L

−1

= 1
(s)

s + R
L

−1
C

1
L s

Then the transfer function is

Y(s)
U(s) = 0 R 1

(s)
s + R

L
−1
C

1
L s

1
C
0

Y(s)
U(s) =

R
LC

s2 + R
L s + 1

LC

EVALUATION OF THE STATE TRANSITION MATRIX

For higher order systems, evaluating  using the formula (s)
is generally inconvenient. The usefulness of the signal-flow(s) = [sI −A]−1

graph state model for obtaining the state transition matrix is highlighted. 

Consider the system     ;*x= Ax+Bu
The solution for the above system, when , isu(t) = 0
 x(t) = (t)x(o)

Taking the Laplace transformation of the above equation, we have
X(s) = (s)x(0)

Therefore we can evaluate the Laplace transform of the transition matrix
from the signal-flow graph by determining the relation between a state
variable  and the state initial conditions usingXi(s) [x1(0),x2(0)¢xn(0)],
Mason’s gain formula.

Thus for a second-order system, we would have

X1(s) = 11(s)x1(0) + 12(s)x2(0)
X2(s) = 21(s)x1(0) + 22(s)x2(0)

Note that all the elements of the state  transition Matrix , can beij(s)
obtained by evaluating the individual relationships between  and Xi(s) xj(0)
from the state model flow graph.
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How to show Initial Conditions on the SFG

Consider the equation *x1 = x2 ; x1(0)
Taking Laplace transform yields 

 sX1(s) −x1(0) = X2(s)
The above equation becomes 

, which is algebraicX1(s) = s−1x1(0) +s−1X2(s)
and can be represented by a signal flow
graph as shown.

Note that the initial condition of the state  appears as an input to thex1

node representing the state with a branch gain of s−1.

Example

Determine  for the system given by (s) A = 0 −2
1 −3

,B = 2
0

,C = [0 3]

using two different methods. 

Solution 

(1)

[sI −A] = s 2
−1 (s +3) ; (s) = sI −A = s 2

−1 (s +3) = s2 +3s +2

(s) = [sI −A]−1 = s 2
−1 (s +3)

−1

= 1
(s2 +3s +2)

(s +3) −2
1 s

(2) Draw a signal-flow graph showing all initial conditions

To obtain , set , and redraw the SFG without the input and(s) U(s) = 0
output nodes because they are not involved in the evaluation of  .(s)
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Recall that 

X1(s) = 11(s)x1(0) + 12(s)x2(0)
X2(s) = 21(s)x1(0) + 22(s)x2(0)

Where (s) = 11(s) 12(s)
21(s) 22(s)

Using Mason’s gain formula, we obtain 

11(s) =
X1(s)
x1(0) x2(0)=0

=
1
s (1 +3s−1)

1 +3s−1 +2s−2 = s +3
(s2 +3s +2)

12(s) =
X1(s)
x2(0) x1(0)=0

=
1
s (−2s−1)

1 +3s−1 +2s−2 = −2
(s2 +3s +2)

21(s) =
X2(s)
x1(0) x2(0)=0

=
1
s (s−1)

1 +3s−1 +2s−2 = 1
(s2 +3s +2)

22(s) =
X2(s)
x2(0) x1(0)=0

=
1
s (1)

1 +3s−1 +2s−2 = s
(s2 +3s +2)

Hence

(s) =

s +3
(s2 +3s +2)

−2
(s2 +3s +2)

1
(s2 +3s +2)

s
(s2 +3s +2)
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Comments

We can now find  if we wish(t)

 (t) =L−1 (s) =
(2e−t −e−2t) (−2e−t +2e−2t)
(e−t −e−2t) (−e−t +2e−2t)

We can also find the states and the output for any initial conditions.
For example when and we havex1(0) = x2(0) = 1 u(t) = 0,

x1(t)
x2(t)

= (t) x1(0)
x2(0)

=
(2e−t −e−2t) (−2e−t +2e−2t)
(e−t −e−2t) (−e−t +2e−2t)

1
1

= e−2t

e−2t

__________________________________________________________________
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