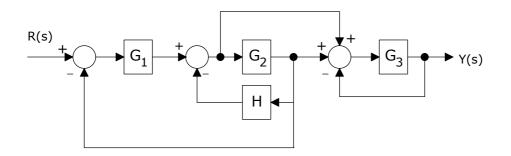
## King Fahd University of Petroleum & Minerals Electrical Engineering Department

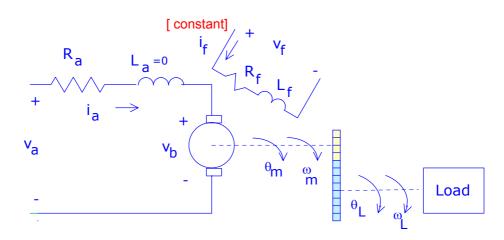
EE 380 • CONTROL ENGINEERING

[MAJOR EXAMINATION #1]

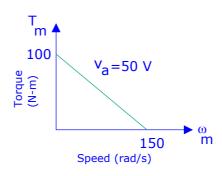
OCTOBER 13, 2003


Time 8:00 - 9:30 PM

| Name:   |                            |                             |
|---------|----------------------------|-----------------------------|
| ID #:   |                            |                             |
| Section | <mark>02- (8:00 AM)</mark> | <mark>04- (10:00 AM)</mark> |


| PROBLEM # | SCORE | MAXIMUM |
|-----------|-------|---------|
| 1         |       | 20      |
| 2         |       | 30      |
| 3         |       | 25      |
| 4         |       | 25      |
| TOTAL     |       | 100     |

Prof. Youssef Abdel-Magid


Q1. Reduce the block diagram to a single transfer function  $\frac{Y(s)}{R(s)}$  using block diagram reduction techniques.

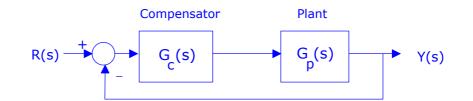


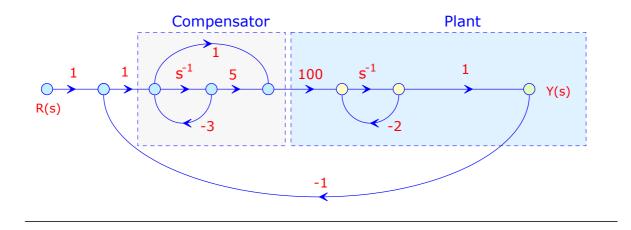
Q2. Consider the armature-controlled dc motor, and the torque-speed curve shown, find the transfer function that relates the output torque to the input armature voltage  $\frac{T_L(s)}{V_a(s)}$ .



 $J_m = 2 \text{ kg-m}^2$ ;  $J_L = 18 \text{ kg-m}^2$ ;  $b_m = 2 \text{ N-m s/rad}$ ;  $b_L = 36 \text{ N-m s/rad}$ ;  $n = \frac{50}{150}$ 




Q4. A control system is described by the following state and output equations


$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t) = \begin{bmatrix} 0 & 2 \\ -1 & -3 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{u}(t)$$
$$\boldsymbol{y}(t) = C\boldsymbol{x}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}(t)$$

(a) Find the transfer function of the system.  $\begin{bmatrix} 1 \end{bmatrix}$ 

(b) If the input is zero, with 
$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, find the output  $\mathbf{y}(t), t \ge 0$ .

- Q3. Consider the closed-loop control system shown, and its signal-flow graph .
  - (a) Find the closed-loop transfer function  $\frac{Y(s)}{R(s)}$  using Mason's Rule
  - (b) Find  $G_c(s)$ , the compensator transfer function, and  $G_p(s)$ , the plant transfer function directly from the signal-flow graph.
  - (c) Assign state variables on the signal-flow graph state diagram from right to left in ascending order.
  - d) Give **2** state variable representations of the system based on (c) and in controller canonical form.



