King Fahd University of Petroleum \& Minerals

Electrical Engineering Department
EE 380 / 032
Control Engineering
Problem Session II

Q1. Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system that has the following characteristic equation:

$$
s^{4}+2 s^{\frac{1}{3}}+10 s^{2}+20 s+5=0
$$

Q2. For the C.E. of the feedback control system given, determine the range of K so that the system is stable. Determine the value of K so that the system is marginally stable and the frequency of sustained oscillation:

$$
s^{4}+25 s^{3}+15 s^{2}+20 s+K=0
$$

Q3. Given the forward-path transfer function of a unity-feedback control system,

$$
\frac{K(s+10)(s+20)}{s^{2}(s+2)}
$$

Find K that will cause sustained constant amplitude oscillations.
Q4. Select K so that for an input of $100 t u(t)$, the steady state error will be 0.01 .

Q5. For the control system shown, find the values of K and K_{t} so that the maximum overshoot of the output is approximately 4.3% and the rise time t_{r} is approximately 0.2 sec . Simulate the system to check the accuracy of your solutions.

Q6. Find the step-, ramp-, and parabolic-error constants for the control system of Q5. The error signal is defined to be $e(t)$. Assuming the system is stable, find the steady-state errors in terms of K and K_{t} when the following inputs are applied:
a) $\quad r(t)=u_{s}(t)$
b) $r(t)=t u_{s}(t)$
c) $\mathrm{r}(\mathrm{t})=\frac{t^{2}}{2} u_{s}(t)$

Q7. For the control system of Q5, find the values of K and K_{t} so that the damping ratio of the system is 0.6 and the 2% settling time of the unit-step response is 0.1 sec . simulate the system to check the accuracy of your results.

Q8. The forward-path transfer functions of unity-feedback control systems are given by:
a) $\quad G(s)=\frac{K(s+4)}{s\left(s^{2}+4 s+4\right)(s+5)(s+6)}$
b) $\quad G(s)=\frac{K\left(s^{2}+2 s+10\right)}{s(s+5)(s+10)}$

Construct the root-loci for $\infty>\mathrm{K}>0$

