KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Electrical Engineering Department

EE380

081

Problem Session I

Problem 1:

Represent the electrical network shown in Figure 1 in state space, where $i_{R}(t)$ is the output.

Problem 2:

A position servo for a large microwave antenna is shown in Figure 2. The antenna is modeled as a mass having a large moment of inertia, J. An output potentiometer measures the output shaft position, converting the position to the proportional voltage according to $v_0 = K_p \theta$. The motor is coupled to the antenna with a gear train, of ratio $\theta = \frac{N_1}{N_2} \theta_m$. Assume the motor has negligible

armature inductance and negligible internal damping.

- Write the dynamic model equations.
- Draw the block diagram and signal flow graph.
- Find the transfer function C(s)/R(s).

Problem 3:

Reduce the block diagram shown in Figure 3 to obtain the system transfer function Y(s)/R(s).

Problem 4:

A system with several feedback loops and feed forward paths is shown in Figure 4. Using Mason's rules find the transfer function of the system.

Problem 5:

The state equations of a linear time-invariant system are represented by x(t) = Ax(t) + B(u(t))

(a) Find the state-transition matrix $\Phi(t)$, the characteristic equation, and the eigenvalues of A for the case:

	-5	1	0		[0	
A =	-6	0	1	,	B =	0	
	0	0	0			1	

(b) Find $\Phi(t)$, and the characteristic equation using matlab.

<u>Problem 6:</u> For the transfer function given, determine the signal flow model and the matrix differential equation using:

- (a) The phase variable format, and
- a) The canonical (diagonal) variable format, and
- b) The input feed forward format

$$\frac{Y(s)}{U(s)} = \frac{5(s+6)}{s^3 + 10s + 31s + 30}$$

Figure 1

Figure 3

Figure 4