EE 466
Term 062

Assignment 1

Due Date Monday March 12, 2007

Q1. Draw the impedance diagram of the following network in per unit with respect a 100 MVA bas and a voltage of 13.8 kV on the generator side. The network data is shown in Table 1 below.

Table 1

Equipment	Power (MVA)	Voltage (kV)	Reactance (\%)
G	100	13.8	4
T 1	80	$13.8 / 230$	7
T 2	80	$13.8 / 230$	7
M	75	13.8	4

The transmission line has an impedance $Z=\mathbf{j} 100$ Ohms.

Q2. (a) A Y-connected voltage source has the following unbalanced voltages:

$$
V_{a}=177 \angle 10^{0} ; V_{b}=156 \angle-100^{\circ} ; V_{c}=105 \angle 220^{\circ}
$$

Obtain the symmetrical components of voltages.
(b) The symmetrical components of a phase current are given below in per unit

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{a}}{ }^{(1)}=-0.8-\mathrm{j} 2.6 & \text { per unit } \\
\mathrm{I}_{\mathrm{a}}{ }^{(2)}=-\mathrm{j} 2.0 & \text { per unit } \\
\mathrm{I}_{\mathrm{a}}{ }^{(0)}=-\mathrm{j} 3.0 & \text { per unit }
\end{array}
$$

Obtain the phase current $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{c}}$.

Q3. (a) Draw the zero sequence impedance diagram of the following network. The zero sequence impedance of each component is given in per cent to the same base.

Table 1

Equipment	Reactance (per unit)
$\mathrm{G}_{1}-\mathrm{G}_{3}$	0.1
$\mathrm{~T}_{1}-\mathrm{T}_{6}$	0.05
X_{n}	0.05
X_{112}	0.80
X_{113}	0.40
X_{123}	0.55

(b) Obtain the Thevenin equivalent zero sequence impedance for faults at points P1, P2 and P3.

Q4 Two generators are connected through two transformers to a high voltage bus which supplies a line. The line is open -circuited at the remote. The pre-fault voltage at the end of the line is 515 KV . The system is shown below and the system data is given in the following a table.

Table 2 System data

Equipment	Rated power (MVA)	Rated voltage (KV)	X_{1} Per unit	X_{2} Per unit	X_{0} Per unit
G_{1}	1000	20	0.1	0.1	0.05
G_{2}	800	22	0.15	0.15	0.08
$\mathrm{~T}_{1}$	1000	$500 \mathrm{Y} / 20 \Delta$	0.175	0.175	0.175
$\mathrm{~T}_{2}$	800	$500 \mathrm{Y} / 22 \mathrm{Y}$	0.16	0.16	0.16
Transmission Line	1500	500	0.15	0.15	0.40

Work on a base power of 1000 MVA and base voltage 500 kV on the transmission line. The neutral of Generator G_{1} is grounded through a reactance of 0.04 Ohms.

Find the value of the fault current in amperes for the faults at the end of line for the following cases:
(i) Single-line-ground
(ii) Line-line
(iii) Line-line-ground

