EE 466

Term 062

Assignment 1

Due Date Monday March 12, 2007

Q1. Draw the impedance diagram of the following network in per unit with respect a 100 MVA bas and a voltage of 13.8 kV on the generator side. The network data is shown in Table 1 below.

Table 1				
	Equipment	Power (MVA)	Voltage (kV)	Reactance (%)
	G	100	13.8	4
	T1	80	13.8/230	7
	T2	80	13.8/230	7
	М	75	13.8	4

The transmission line has an impedance Z = j 100 Ohms.

Q2. (a) A Y-connected voltage source has the following unbalanced voltages:

 $V_a = 177 \angle 10^0$; $V_b = 156 \angle -100^0$; $V_c = 105 \angle 220^0$

Obtain the symmetrical components of voltages.

(b) The symmetrical components of a phase current are given below in per unit

 $\begin{array}{ll} I_a{}^{(1)} = -0.8 \mbox{-} j 2.6 & \mbox{per unit} \\ I_a{}^{(2)} = -j 2.0 & \mbox{per unit} \\ I_a{}^{(0)} = -j 3.0 & \mbox{per unit} \end{array}$

Obtain the phase current I_a , I_b , I_c .

Q3. (a) Draw the zero sequence impedance diagram of the following network. The zero sequence impedance of each component is given in per cent to the same base.

	Table 1		
Equipment	Reactance		
	(per unit)		
G ₁ -G ₃	0.1		
T_1-T_6	0.05		
X _n	0.05		
X ₁₁₂	0.80		
X ₁₁₃	0.40		
X ₁₂₃	0.55		

(b) Obtain the Thevenin equivalent zero sequence impedance for faults at points P1, P2 and P3.

Q4 Two generators are connected through two transformers to a high voltage bus which supplies a line. The line is open –circuited at the remote. The pre-fault voltage at the end of the line is 515 KV. The system is shown below and the system data is given in the following a table.

Table 2 System data						
Equipment	Rated	Rated voltage	X1	X_2	X_0	
	power	(KV)	Per unit	Per unit	Per unit	
	(MVA)					
G ₁	1000	20	0.1	0.1	0.05	
G ₂	800	22	0.15	0.15	0.08	
T ₁	1000	500Y/20 Δ	0.175	0.175	0.175	
T_2	800	500Y/22Y	0.16	0.16	0.16	
Transmission	1500	500	0.15	0.15	0.40	
Line						

Work on a base power of 1000 MVA and base voltage 500 kV on the transmission line. The neutral of Generator G_1 is grounded through a reactance of 0.04 Ohms.

Find the value of the fault current in amperes for the faults at the end of line for the following cases:

- (i) Single-line-ground
- (ii) Line-line
- (iii) Line-line-ground

