KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE-463 - 131

Key Solutions

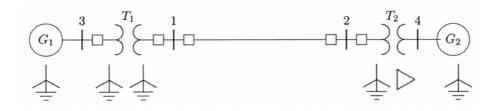
Quiz 4 ser#: I.D.: Name:

Q.1) The symmetrical components of a set of unbalanced three-phase currents are

$$I_{a0} = 3 \angle -30^{\circ};$$
 $I_{a1} = 5 \angle 90^{\circ};$ $I_{a2} = 4 \angle 30^{\circ}$

The original unbalanced phasor currents are

$$a)I_a = 8.19 \angle 42.2^{\circ};$$
 $I_b = 4 \angle -30;$ $I_c = 8.19 \angle -102.2^{\circ}$


b)
$$I_a = 4 \angle -30$$
; $I_b = 8.19 \angle 42.2^o$; $I_a = 8.19 \angle -102.2^o$

c)
$$I_n = 8.19 \angle 42.2^\circ$$
; $I_b = 8.19 \angle -102.2^\circ$; $I_c = 4 \angle -30$

$$d)I_a = 8.19 \angle -42.2^c$$
; $I_b = 4 \angle -30$; $I_o = 8.19 \angle 102.2^o$

Q.2) Transformer T_1 is a step-up transformer. The symmetrical components of line voltages of bus 3 (ref. to phase voltage base), due to SLG fault on bus 1 as seen from the H.V.S. of T_1 are

$$V_3^0 = 0$$
; $V_3^1 = 0.89885$; $V_3^2 = -0.1012$

The symmetrical components of line voltages of bus 3 (ref. to phase voltage base), due to SLG fault on bus 1 as seen from the L.V.S. of T_1 are

a)
$$V_3^0 = C$$
; $V_3^1 = 0.89885 \angle 30^\circ$; $V_3^2 = 0.1012 \angle -210^\circ$

b)
$$V_7^0 = 0$$
; $V_7^1 = 0.89885 \angle -30^\circ$; $V_7^2 = 0.1012 \angle -150^\circ$

c)
$$V_3^0 = C$$
; $V_5^1 = \sqrt{3} * 0.89885 \angle -30^\circ$; $V_3^2 = \sqrt{3} * 0.1012 \angle -150^\circ$

$$\mathbf{d})V_3^0 = C$$
; $V_3^1 = 0.89885$; $V_3^2 = 0.1012 \angle 180^\circ$