KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE 520 (131)
MID-TERM EXAM
October $\mathbf{2 6}^{\text {th }} \mathbf{2 0 1 3}$
12:30-2:30 pm
Key Solutions

Student Name:

Student I.D.\#:
Student Serial \#:

Question \# 1 (20)	
Question \# 2 (30)	
Question \# 3 (25)	
Question \# 4 (25)	
Total	

QUESTION \# 1-a (10 Marks)

Find the $\mathrm{L} \mathrm{U}_{1}$ factorization of the following symmetric matrix:
$A=\left[\begin{array}{lll}2.0 & 1.0 & 3.0 \\ 1.0 & 5.0 & 4.0 \\ 3.0 & 4.0 & 7.0\end{array}\right]$

Solution:

$L=\left[\begin{array}{ccc}2.0 & 0 & 0 \\ 1.0 & 4.5 & 0 \\ 3.0 & 2.5 & 1.1\end{array}\right]$
$U=\left[\begin{array}{ccc}1 & 0.5 & 1.5 \\ 0 & 1 & 0.55 \\ 0 & 0 & 1\end{array}\right]$

QUESTION \# 1-b (10 Marks)

Store the non-zero entries only using the row-column entry method before and after the factorization (consider the arbitrary fashion case).

Solution:

Before the factorization; the non-zero entries of the matrix will be

Counter	STO	IR	IC
1	2.0	1	1
2	1.0	1	2
3	3.0	1	3
4	5.0	2	2
5	4.0	2	3
6	7.0	3	3

After the factorization; the non-zero entries of the matrix will be

Counter	STO	IR	IC
1	2.0	1	1
2	0.5	1	2
3	1.5	1	3
4	1.0	2	1
5	4.5	2	2
6	0.55	2	3
7	3.0	3	1
8	2.5	3	2
9	1.1	3	3

QUESTION \# 2-a (15 Marks)
Consider the 5 -bus system shown below. The voltage source is $1.2 \angle 0^{\circ}$ and the load currents are $I_{L 1}=-j 0.1 ; I_{L 2}=-j 0.2 ; I_{L 3}=-j 0.1 ; I_{L 4}=-j 0.2$. (all values are in per-unit).

The bus impedance matrix after converting the voltage source to a current source (by ignoring bus 5) is

$$
Z_{B U S}=j\left[\begin{array}{cccc}
0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.6 & 0.2 & 0.6 \\
0.2 & 0.2 & 0.8 & 0.2 \\
0.2 & 0.6 & 0.2 & 1.1
\end{array}\right]
$$

Find the four bus voltages $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$.

Solution:

The bus voltages are
$\left[\begin{array}{l}V_{1} \\ V_{2} \\ V_{3} \\ V_{4}\end{array}\right]=Z_{\text {BUS }} I=j\left[\begin{array}{llll}0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.6 & 0.2 & 0.6 \\ 0.2 & 0.2 & 0.8 & 0.2 \\ 0.2 & 0.6 & 0.2 & 1.1\end{array}\right] j\left[\begin{array}{c}-5.9 \\ 0.2 \\ 0.1 \\ 0.2\end{array}\right]=\left[\begin{array}{l}1.08 \\ 0.92 \\ 1.02 \\ 0.82\end{array}\right]$ per-unit

QUESTION \# 2-b (15 Marks)

Modify $Z_{B U S}$ (using building algorithm) to include a capacitor bank of reactance 5.4 per-unit connected from bus 4 to the reference and then recalculate the bus voltages.

Solution:

The loop matrix after adding the capacitor bank is

$$
Z_{\text {LOOP }}=j\left[\begin{array}{rrrrr}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.6 & 0.2 & 0.6 & 0.6 \\
0.2 & 0.2 & 0.8 & 0.2 & 0.2 \\
0.2 & 0.6 & 0.2 & 1.1 & 1.1 \\
0.2 & 0.6 & 0.2 & 1.1 & -4.3
\end{array}\right]
$$

After Kron reduction, the modified $Z_{B U S}$ is

$$
Z_{B U S}=j\left[\begin{array}{llll}
0.20930 & 0.22791 & 0.20930 & 0.25116 \\
0.22791 & 0.68372 & 0.22791 & 0.75349 \\
0.20930 & 0.22791 & 0.80930 & 0.25116 \\
0.25116 & 0.75349 & 0.25116 & 1.38140
\end{array}\right]
$$

The bus voltages after adding the capacitor bank are

$$
\begin{aligned}
{\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right] } & =Z_{\text {BUS }} I=j\left[\begin{array}{llll}
0.20930 & 0.22791 & 0.20930 & 0.25116 \\
0.22791 & 0.68372 & 0.22791 & 0.75349 \\
0.20930 & 0.22791 & 0.80930 & 0.25116 \\
0.25116 & 0.75349 & 0.25116 & 1.38140
\end{array}\right] j\left[\begin{array}{c}
-5.9 \\
0.2 \\
0.1 \\
0.2
\end{array}\right] \\
& =\left[\begin{array}{l}
1.118 \\
1.034 \\
1.058 \\
1.030
\end{array}\right] \text { per-unit }
\end{aligned}
$$

QUESTION \# 3 (25 Marks)

Figure below shows the one-line diagram of a simple three-bus power system with generation at bus 1. Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected.

(a) Using Gauss-Seidel method and initial flat values for the bus voltages, determine V_{2} and V_{3}. Perform two iterations.
(b) If after several iterations the bus voltages converge to
$V_{2}=0.90-j 0.10 \mathrm{pu}$
$V_{3}=0.95-j 0.05 \mathrm{pu}$
Determine the slack bus real and reactive power.

Solution:

(a) Line impedances are converted to admittances

$$
\begin{aligned}
& y_{12}=-j 30 \\
& y_{13}=\frac{1}{j 0.0125}=-j 80 \\
& y_{23}=\frac{1}{j 0.05}=-j 20
\end{aligned}
$$

At the P-Q buses, the complex loads expressed in per units are

$$
\begin{aligned}
& S_{2}^{s c h}=-\frac{(400+j 320)}{100}=-4.0-j 3.2 \mathrm{pu} \\
& S_{3}^{s c h}=-\frac{(300+j 270)}{100}=-3.0-j 2.7 \mathrm{pu}
\end{aligned}
$$

For hand calculation, we use (6.28). Bus 1 is taken as reference bus (slack bus). Starting from an initial estimate of $V_{2}^{(0)}=1.0+j 0.0$ and $V_{3}^{(0)}=1.0+j 0.0, V_{2}$ and V_{3} are computed from (6.28) as follows

$$
\begin{aligned}
V_{2}^{(1)} & =\frac{\frac{S_{2}^{s c c^{*}}}{V_{2}^{(0)^{*}}}+y_{12} V_{1}+y_{23} V_{3}^{(0)}}{y_{12}+y_{23}} \\
& =\frac{\frac{-4.0+j 3.2}{1.0-j 0}+(-j 30)(1.0+j 0)+(-j 20)(1.0+j 0)}{-j 50} \\
& =0.936-j 0.08
\end{aligned}
$$

and

$$
\begin{aligned}
V_{3}^{(1)} & =\frac{\frac{S_{3}^{s c c^{*}}}{V_{3}^{()^{*}}}+y_{13} V_{1}+y_{23} V_{2}^{(1)}}{y_{13}+y_{23}} \\
& =\frac{\frac{-3.0+j 2.7}{1-j 0}+(-j 80)(1.0+j 0)+(-j 20)(0.936-j 0.08)}{-j 100} \\
& =0.9602-j 0.046
\end{aligned}
$$

For the second iteration we have

$$
\begin{aligned}
V_{2}^{(2)} & =\frac{\frac{-4.0+j 3.2}{0.936+j 0.08}+(-j 30)(1.0+j 0)+(-j 20)(0.9602-j 0.046)}{-j 50} \\
& =0.9089-j 0.0974
\end{aligned}
$$

and

$$
\begin{aligned}
V_{3}^{(2)} & =\frac{\frac{-3.0+j 2.7}{0.9602+j 0.046}+(-j 80)(1.0+j 0)+(-j 20)(0.9089-j 0.0974)}{(-j 100)} \\
& =0.9522-j 0.0493
\end{aligned}
$$

(b) With the knowledge of all bus voltages, the slack bus power is obtained from (6.27)

$$
\begin{aligned}
P_{1}-j Q_{1}= & V_{1}^{*}\left[V_{1}\left(y_{12}+y_{13}\right)-\left(y_{12} V_{2}+y_{13} V_{3}\right)\right] \\
= & 1.0[1.0(-j 30-j 80)-(-j 30)(0.9-j 0.1)- \\
& (-j 80)(0.95-j 0.05)] \\
= & 7.0-j 7.0
\end{aligned}
$$

or the slack bus real and reactive powers are $P_{1}=7.0 \mathrm{pu}=700 \mathrm{MW}$ and $Q_{1}=7.0$ $\mathrm{pu}=700 \mathrm{Mvar}$.

QUESTION \# 4 (25 Marks)

Consider the three-bus power system shown below. Line admittances are marked in per unit on a 100 MVA base. Obtain the power flow solution using the fast decoupled algorithm. Perform two iterations.

Solution:

(a) In this system, bus 1 is the slack bus and the corresponding bus susceptance matrix for evaluation of phase angles $\Delta \delta_{2}$ and $\Delta \delta_{3}$ form the bus admittance matrix in Problem 6.12 is

$$
B^{\prime}=\left[\begin{array}{rr}
-60 & 20 \\
20 & -40
\end{array}\right]
$$

The inverse of the above matrix is

$$
\left[B^{\prime}\right]^{-1}=\left[\begin{array}{ll}
-0.02 & -0.01 \\
-0.01 & -0.03
\end{array}\right]
$$

The expressions for real power at bus 2 and 3 and the reactive power at bus 3 are given in Problem 6.12. The slack bus voltage is $V_{1}=1.0 \angle 0 \mathrm{pu}$, and the bus 2 voltage magnitude is $\left|V_{3}\right|=1.05 \mathrm{pu}$. Starting with an initial estimate of $\left|V_{3}^{(0)}\right|=$ $1.0, \delta_{2}^{(0)}=0.0$, and $\delta_{3}^{(0)}=0.0$, the power residuals are computed from (6.63) and (6.64)

$$
\begin{aligned}
& \Delta P_{2}^{(0)}=P_{2}^{s c h}-P_{2}^{(0)}=4-(0)=4 \\
& \Delta P_{3}^{(0)}=P_{3}^{s c h}-P_{3}^{(0)}=-5-(0)=-5 \\
& \Delta Q_{3}^{(0)}=Q_{3}^{s c h}-Q_{3}^{(0)}=-4-(-1)=-3
\end{aligned}
$$

The fast decoupled power flow algorithm given by (6.77) becomes

$$
\left[\begin{array}{c}
\Delta \delta_{2}^{(0)} \\
\Delta \delta_{3}^{(0)}
\end{array}\right]=-\left[\begin{array}{rr}
-0.02 & -0.0 \\
-0.01 & -0.03
\end{array}\right]\left[\begin{array}{r}
\frac{4}{1.05} \\
\frac{-5}{1.0}
\end{array}\right]=\left[\begin{array}{r}
.0262 \\
-0.1119
\end{array}\right]
$$

Since bus 2 is a regulated bus, the corresponding row and column of \boldsymbol{B}^{\prime} are eliminated and we get

$$
B^{\prime \prime}=[-40]
$$

From (6.78), we have

$$
\Delta\left|V_{3}\right|=-\left[\frac{-1}{40}\right]\left[\frac{-3}{1.0}\right]=-0.075
$$

The new bus voltages in the first iteration are

$$
\begin{aligned}
\Delta \delta_{2}^{(0)} & =0.0262 \quad \delta_{2}^{(1)}=0+(0.0262)=0.0262 \text { radian }=1.5006^{\circ} \\
\Delta \delta_{3}^{(0)} & =-0.1119 \quad \delta_{3}^{(1)}=0+(-0.1119)=-0.1119 \text { radian }=-6.4117^{\circ} \\
\Delta\left|V_{3}^{(0)}\right| & =-0.075 \quad\left|V_{2}^{(1)}\right|=1+(-0.075)=0.925 \mathrm{pu}
\end{aligned}
$$

For the second iteration, the power residuals are

$$
\begin{gathered}
\Delta P_{2}^{(1)}=P_{2}^{s c h}-P_{2}^{(1)}=4-(3.7739)=0.2261 \\
\Delta P_{3}^{(1)}=P_{3}^{s c h}-P_{3}^{(1)}=-5-(-4.7399)=-.2601 \\
\Delta Q_{3}^{(1)}=Q_{3}^{s c h}-Q_{3}^{(1)}=-4-(-3.3994)=-0.6006 \\
{\left[\begin{array}{c}
\Delta \delta_{2}^{(1)} \\
\Delta \delta_{3}^{(1)}
\end{array}\right]=-\left[\begin{array}{rr}
-0.02 & -0.0 \\
-0.01 & -0.03
\end{array}\right]\left[\begin{array}{r}
\frac{0.2261}{1055} \\
\frac{-0.2601}{0.925}
\end{array}\right]=\left[\begin{array}{r}
0.0015 \\
-0.0063
\end{array}\right]}
\end{gathered}
$$

From (6.78), we have

$$
\Delta\left|V_{3}\right|=-\left[\frac{-1}{40}\right]\left[\frac{-0.6006}{0.925}\right]=-0.0162
$$

The new bus voltages in the second iteration are

$$
\begin{aligned}
& \Delta \delta_{2}^{(1)}=0.0015 \quad \delta_{2}^{(2)}=0.0262+(0.0015)=0.0277 \text { radian }=1.5863^{\circ} \\
& \Delta \delta_{3}^{(1)}=-0.0063 \quad \delta_{3}^{(2)}=-0.1119+(-0.0063)=-0.1182 \text { radian }=-6.7716^{\circ} \\
& \Delta\left|V_{3}^{(1)}\right|=-0.0162 \quad\left|V_{3}^{(2)}\right|=0.925+(-0.0162)=0.9088 \mathrm{pu}
\end{aligned}
$$

