KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE-520 Project

Semester (131)

Dr. Ibrahim O. Habiballah

Part I: Load-Flow Studies

The line-data and bus-data of the IEEE 30-bus system are given below on a 100 MVA base. The minimum and maximum limits of voltage magnitude and phase angle are considered to be 0.95p.u. to 1.05p.u. and -45° to $+45^{\circ}$ respectively.

<u> </u>		<u> </u>																				
MVA	rating	130	130	65	130	65	130	90	65	20	130	32	65	32	32	32	65	65	32	32	32	32
Half line charging	susceptance $(p.u.)$	0.03	0.02	0.02	0	0.02	0	0	0	0.01	0	0	0	0	0.01	0.02	0	0	0	0	0	0
ance $(p.u.)$	Reactance	0.06	0.20	0.18	0.02	0.18	0.04	0.04	0.23	0.12	0.08	0.09	0.21	0.56	0.06	0.20	0.21	0.11	0.21	0.09	0.08	0.15
Line impedance $(p.u.)$	Resistance	0.02	0.05	0.06	0.05	0.06	0.01	0.01	0	0.05	0.03	0.01	0	0	0.07	0.06	0	0	0.09	0.03	0.03	0.07
To	bus	2	3	4	S	9	4	9	12	2	7	8	6	10	28	28	11	10	20	17	21	22
From	bus	1	1	2	2	2	3	4	4	5	9	9	9	9	9	8	6	6	10	10	10	10
Line	number	1	2	3	4	ъ	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21

Line Data of IEEE 30-Bus System (1/2)

MVA	rating	65	32	32	32	16	16	16	16	16	32	32	16	16	16	16	16	16	16	65	16
Half line charging	susceptance $(p.u.)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ance $(p.u.)$	Reactance	0.14	0.26	0.13	0.12	0.12	0.22	0.21	0.19	0.13	0.07	0.22	0.18	0.27	0.33	0.38	0.21	0.4	09.0	0.4	0.45
Line impedance $(p.u.)$	Resistance	0	0.12	0.07	0.01	0.22	0.11	0.10	0.08	0.06	0.03	0.01	0.11	0.13	0.19	0.25	0.11	0.22	0.32	0	0.24
To	bus	13	14	15	16	15	18	23	17	19	20	22	24	24	25	26	27	29	30	27	30
From	bus	12	12	12	12	14	15	15	16	18	19	21	22	23	24	25	25	27	27	28	29
Line	number	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

Line Data of IEEE 30-Bus System (2/2)

Transformer Tap Setting Data of IEEE 30-Bus System

From bus	To bus	Tap setting value $(p.u.)$
6	9	1.0155
6	10	0.9629
4	12	1.0129
28	27	0.9581

Reactive	power	limits	$Q_{\max} (MVAR)$	150	60	0	0	0	0	0	0	0	0	0	0	44.7	0	0	0	0	0	0
Read	bod	lin	Q_{\min} (MVAR)	-20	-20	0	0	0	0	0	0	0	0	0	0	-15	0	0	0	0	0	0
Load	Reactive	power	(MVAR)	-4.638	27.677	0	0	0	0	0	0	0	0	0	0	13.949	0	0	0	0	0	0
ľ	Real	power	(MM)	24.963	60.97	0	0	0	0	0	0	0	0	0	0	37	0	0	0	0	0	0
Generation	Reactive	power	(MVAR)	0	12.7	1.2	1.6	0	0	10.9	30	0	2	0	7.5	0	1.6	2.5	1.8	5.8	0.9	3.4
Gene	Real	power	(MM)	0	21.7	2.4	7.6	0	0	22.8	30	0	5.919	0	11.2	0	6.2	8.2	3.5	6	3.2	9.5
tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bus voltage		Magnitude	(p.u.)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Bus	number	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19

Bus Data of IEEE 30-Bus System (1/2)

 Т

 T T

Т

זר

Т

Г

														
Reactive	ver	limits	$Q_{\max} (MVAR)$	0	0	62.5	40	0	0	0	48.7	0	0	0
Read	power	lim	Q_{\min} (MVAR)	0	0	-15	-10	0	0	0	-15	0	0	0
Load	Reactive	power	(MVAR)	0	0	40.34	8.13	0	0	0	10.97	0	0	0
Γ	Real	power	(MM)	0	0	31.59	22.2	0	0	0	28.91	0	0	0
Generation	Reactive	power	(MVAR)	0.7	11.20	0	1.6	6.70	0.00	2.30	0	0	0.00	1.90
Gene	Real	power	(MM)	2.2	19.669	0	3.2	15	1.00	3.50	0	0	3.659	12.00
tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0
Bus voltage		Magnitude	$(\overline{p}.u.)$	1	1	1	1	1	1	1	1	1	1	1
		Bus	number	20	21	22	23	24	25	26	27	28	29	30

Bus Data of IEEE 30-Bus System (2/2)

Shunt Capacitor Data of IEEE 30-Bus System

Bus Number	Suseptance (p.u.)
10	20 + Your two-digit serial number
24	5 + 0.Your two-digit serial number

- 1. Use the Power World Simulation Package to simulate the above IEEE 30-bus power system indicating the following:
- > The single line diagram of the system including the circuit breaker at both ends of every line.
- > The voltage (p.u.), generation (MW and MVAR), and load (MW and MVAR) for each bus.
- > The line-flows (MW and MVAR) at both ends of every line.
- ➤ The line-flow pie chart on every line.
- 2. Perform the following tasks:
- Run your own case for a simulation time of 2 hours (7200 seconds) and simulation speedup of 60 seconds.
- ➤ Use the load variation graph to simulate a varying load increase from 100% (using the base case) to 130% during the simulation time (This must be automated increase in the load).
- > Show the animated flows on the single-line diagram.
- > Enforce the line overloads to check the line limits.
- Detect and record any system's abnormality during the simulation time (e.g., bus voltages outside 5% range of the nominal values, overloaded lines, ...etc.).
- 3. Introduce a solution for the problems detected earlier to ensure a normal operation of the system during the simulation time (the two-hours).
- 4. Write a formal typed-report showing the following items:
- > The single-line diagram of the original case.
- > Statement on the problems faced during the simulation time.
- The single-line diagram of the modified case (showing all modifications made to resolve the problems of the original case).
- Statements on the suggested solutions with clear explanation and justification for each solution.

Submission Format:

Submit a hard-copy as well as a softcopy (on a cd). Label the softcopy with your student ID for all files in the following format:

- ➤ S200xxxxx0-o.pwd for the original file with extension pwd.
- ➤ S200xxxxx0-o.pwp for the original file with extension pwp.
- > S200xxxxx0-m.pwd for the modified file with extension pwd.
- S200xxxxx0-m.pwp for the modified file with extension pwp.
- > S200xxxxx0.doc for the report file with extension doc.

Control Options:

You may use one of the following control options:

- ✤ Increase the number of circuit of lines (maximum one circuit).
- ✤ Add a new line (maximum two circuits).
- Add a new Generator to one of the existing busses (one generator of 100MW and 40MVAR).
- Add Capacitor banks (maximum at two locations; each with 40MVAR).
- ♦ Use Transformer taps (maximum +/- 25% of the nominal value).

Part II: Short-Circuit Studies

Consider the IEEE 30-bus system given in Part I of this project. Assume that each generator has a subtransient reactance of 12% on the 100MVA base. Conduct short circuit analysis before and after modifying your system for the following:

- Calculate the subtransient fault current seen by each circuit breaker due to a solid three-phase fault occur at all bus locations.
- > Calculate the subtransient fault current seen by each circuit breaker due to a three-phase fault through an impedance of (0.1+0.your two digit serial number) occur at all bus locations.
- Calculate the subtransient fault current seen by each circuit breaker due to a solid SLG fault occur at all bus locations.
- > Calculate the subtransient fault current seen by each circuit breaker due to a SLG fault through an impedance of (0.1+0.your two digit serial number) occur at all bus locations.
- > Find out the proper capacity (in MVA) needed of each circuit breaker in these busses.

Due date: December 9th 2013

Good Luck in your project