EE-306 – Electromechanical Devices - Semester 191

## Due Date Oct. 16<sup>th</sup> 2019

## **Homework 3 Solution**

Question 1)

A single-phase, 10 kVA, 2200/220V 60 Hz transformer has:  $R_1=1 \Omega$ ,  $L_1=7.96 \text{ mH}$ ,  $R_2=0.1 \Omega$  and  $L_2=0.796 \text{ mH}$ . A load of 6 kW, 0.8 pf lagging is connected to its secondary side. Using transformer approximated equivalent circuit without excitation branch shown in Figure 1, find:

- 1- Transformer input current.
- 2- Input power factor
- 3- Draw the phasor diagram

Solution:

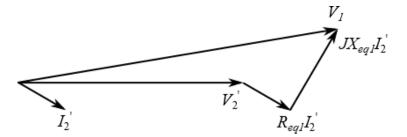
1) transformer input current

 $Z_1 = R_1 + j2\pi f L_1 = 1 + j2\pi * 60 * 7.96 * 10^{-3} = 1 + j3 \Omega$  $Z_2 = R_2 + j2\pi f L_2 = 0.1 + j2\pi * 60 * 0.796 * 10^{-3} = 0.1 + j0.3 \Omega$ So,  $Z'_2 = a^2 Z_2 = 10 + j30 \Omega$ 

Connecting the 6 kW load and referring to primary side, then

$$I_2' = \frac{P}{V_2' \, pf} = \frac{6,000}{2200 \, * \, 0.8} = 3.4 \, A$$

As the magnetization branch is neglected here, the transformer input current equals the  $I'_2 = 3.4 A$ 


2) input power factor:

The power factor is calculated by cosine the angle between the input voltage and current vectors. Therefore,

$$V_1 = V_2' + I_2' Z_{eq-1} = 2200 \angle 0 + 3.4 \angle -\cos^{-1}(0.8) * (11 + j33) = 2298 \angle 1.6^{\circ} V$$

Then, the input power factor equals  $\cos(1.6 - (-\cos^{-1} 0.8)) = 0.78$  Lagging.

3) Phasor diagram:



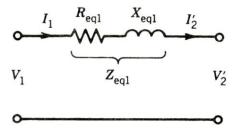



Figure 1: Approximated equivalent circuit

EE-306 – Electromechanical Devices - Semester 191

Question 2)

A single-phase, 20 kVA, 2200/220V 60 Hz transformer has equivalent impedance  $5 + j25 \Omega$  referred to its primary side. Find the voltage regulation if the transformer is loaded by:

- 1- Full load, 0.8 lagging pf.
- 2- 70% of its full load with 0.8 leading pf.

Solution:

$$VR \% = \frac{|V_1| - |V_2'|}{|V_2'|} * 100.$$

1) Full load means that the current and the apparent power are rated values. Therefore,

$$I_{2}' = \frac{S}{V_{2}'} = \frac{20,000}{2200} = 9 A$$

$$V_{1} = V_{2}' + I_{2}'Z_{eq-1} = 2200 \angle 0 + 9 \angle -\cos^{-1}(0.8) * (5 + j25) = 2377 \angle 3.7^{\circ} V$$

$$VR \% = \frac{2377 - 2200}{2200} * 100 = 8.08\%$$

2) at 70% of rated, the current is 0.7\*9=6.36 A, power factor is 0.8 leading  $V_1 = V'_2 + I'_2 Z_{eq-1} = 2200 \angle 0 + 6.36 \angle \cos^{-1}(0.8) * (5 + j25) = 2135 \angle 3.93^\circ V$  $VR \% = \frac{2135 - 2200}{2200} * 100 = -2.95 \%$ 

Question 3)

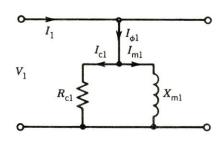
A 10 kVA, 2300/230 V, single-phase transformer has been tested while keeping the meters are connected at the HV side. The tests data are as follows:

- OCT at rated voltage: 0.45 A and 70 W (Measurements at HV side)
- SCT at rated current: 120 V, 240 W (Measurements at HV side)
- 1- Determine the approximate equivalent with excitation branch circuit referred to HV side.

EE-306 – Electromechanical Devices - Semester 191

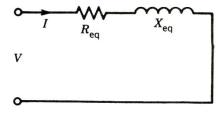
2- Determine the transformer efficiency at full load, 0.8 pf lagging

#### Solution:


Since the meters are connected in the HV side, the parameters can be calculated referred to HV side without transferring.

1) Approximate equivalent with excitation branch referred to HV side.

 $\rightarrow$  From the open circuit test,


$$R_{c} = \frac{V_{oc}^{2}}{P_{oc}} = \frac{2300^{2}}{70} = 75,571.4 \,\Omega$$

$$I_{c} = \frac{V_{oc}}{R_{c}} = \frac{2300}{75,571.4} = 0.03 \,A \quad and \ I_{m} = \sqrt{(I_{oc}^{2} - I_{c}^{2})} = 0.448 \,A$$
Then,  $X_{m} = \frac{V_{oc}}{I_{m}} = \frac{2300}{0.448} = 5,123 \,\Omega$ 



→ For the short circuit test, the current is rated which is  $I'_2 = \frac{s}{v'_2} = \frac{10,000}{2300} = 4.3478 \text{ A}$ 

$$R_{eq-1} = \frac{P_{sc}}{I_{sc}^2} = \frac{240}{4.3478^2} = 12.696 \,\Omega$$
$$Z_{eq-1} = \frac{V_{sc}}{I_{sc}} = \frac{120}{4.3478} = 27.6 \,\Omega$$
$$X_{eq-1} = \sqrt{\left(Z_{eq-1}^2 - R_{eq-1}^2\right)} = 24.5 \,\Omega$$



2) Transformer efficiency at full load, 0.8 pf lagging (X = 1 for full load)

$$\eta = \frac{X.S_{rat}.pf}{P_{core} + X^2 P_{cu-rated} + X.S_{rat}.pf}$$
$$\eta_{\%} = \frac{10,000 * 0.8}{70 + 240 + 10,000 * 0.8} * 100 = 96.26\%$$

EE-306 – Electromechanical Devices - Semester 191

Question 4)

For the transformer of Question 3,

- 1- Determine the percentage loading of the transformer at which the efficiency is a maximum at a load pf of 0.8
- 2- Calculate the maximum efficiency

Solution:

For maximum efficiency at a definite power factor, the copper loss equals core losses. Hence,

1) The loading factor *X* is

$$X = \sqrt{\left(\frac{P_c}{P_{cu-rate}}\right)} = \sqrt{\left(\frac{70}{240}\right)} = 0.54$$

2)

$$\eta_{\%-max} = \frac{X.S_{rat}.pf}{2.P_{core} + X.S_{rat}.pf} = \frac{0.54 * 10,000 * 0.8}{70 * 2 + 0.54 * 10,000 * 0.8} * 100 = 96.86\%$$

#### Question 5)

The efficiency of a 400 kVA, 60 Hz single-phase transformer is 98.77% when delivering full load current of 0.8 pf, and 99.13 % while delivering half rated current at unity power factor. Find:

- 1- core losses
- 2- full-load copper losses

Solution:

$$\eta = \frac{X.S_{rat}.pf}{P_{core} + X^2 P_{cu-rated} + X.S_{rat}.pf}$$
Case-1: 0.9877 =  $\frac{1*400,000*0.8}{P_{core}+1^2*P_{cu-rated}+1*400,000*0.8}$   $\Rightarrow$   $P_{core} + P_{cu-rated} = 3936 W$  (Eq-1)  
Case-2: 0.9913 =  $\frac{0.5*400,000}{P_{core}+0.5^2*P_{cu-rated}+0.5*400,000}$   $\Rightarrow$   $P_{core} + \frac{1}{4}P_{cu-rated} = 1740 W$  (Eq-2)

Solving Eq-1 and Eq-2,

 $P_{core} = 1008 W and P_{cu-rated} = 2928 W$ 

# King Fahd University of Petroleum and Minerals EE-306 – Electromechanical Devices - Semester 191

Best Regards