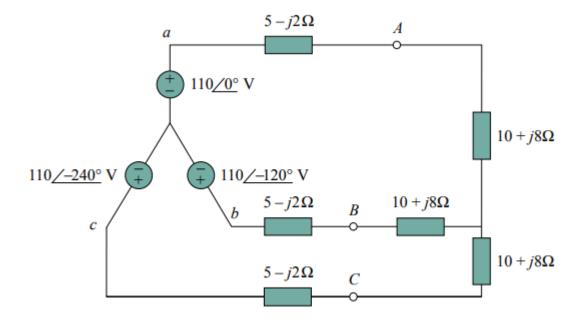
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE 306 – Term 191

HW # 1: Three-Phase Circuits

Due Date: (Sep. 16th, 2019)


Problem # 1:

Determine the phase sequence of the set of voltages

$$v_{an} = 200\cos(\omega t + 10^{\circ})$$

 $v_{bn} = 200\cos(\omega t - 110^{\circ})$, $v_{cn} = 200\cos(\omega t - 230^{\circ})$

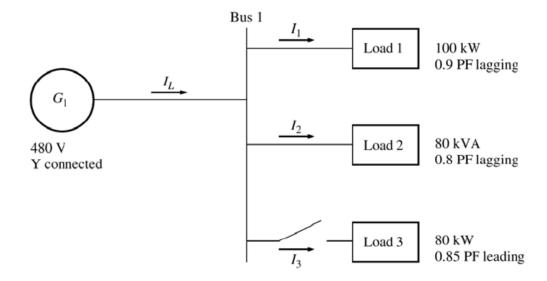
Problem # 2:

Calculate the line currents in the three-wire Y-Y system shown below.

Problem # 3:

A balanced *abc*-sequence Y-connected source with $V_{an} = 100 / 10^{\circ}$ V is connected to a Δ -connected balanced load $(8 + j4) \Omega$ per phase.

Calculate the phase and line currents at the load side.


Problem #4:

Three impedances of 4 + j3 Ω are Δ -connected and tied to a three-phase 208-V power line. Find I_{ϕ} , I_{L} , P, Q, S, and the power factor of this load.

Problem # 5:

Figure below shows a one-line diagram of a simple power system containing a single 480 V generator and three loads. Assume that the transmission lines in this power system are lossless, and answer the following questions.

- (a) Assume that Load 1 is Y-connected. What are the phase voltage and currents in that load?
- (b) Assume that Load 2 is Δ-connected. What are the phase voltage and currents in that load?
- (c) What real, reactive, and apparent power does the generator supply when the switch is open?
- (d) What is the total line current I_L when the switch is open?
- (e) What real, reactive, and apparent power does the generator supply when the switch is closed?
- (f) What is the total line current I_L when the switch is closed?

