KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE-306

Key Solution

Quiz 1	Sec.:	I.D.:	Ser#:	Name:	
Q.1 In a sta	r-connected th	ree-phase circuit,	the line voltage	V _{bc} lags the ph	ase voltage V _{an}
by					(3-points)
a. 30°.					
b. 90° .					
c. 180°.					
d. 210°.					

- Q.2 A three-phase motor consumes 200-MVA at 0.8 power factor lagging. The motor absorbs (---) active power, and (---) reactive power. (4-points)
 - a. 160 MW, 120 MVAR
 - b. 120 MW, 160 MVAR
 - c. 160 MVAR, 160 MW
 - d. 120 MW, 120 MVAR
- Q.3 In a Y-connected source feeding directly a Delta-connected resistive-load, (3-points) a.phase-current magnitude of the load is the source line-current magnitude.
- b. phase-current magnitude of the load is the source phase-current magnitude.
- c. phase-current magnitude of the load is the source line-current magnitude divided by $\sqrt{3}$.
- d. phase-current magnitude of the load is the source line-current magnitude multiplied by $\sqrt{3}$.