EE 306: Solution of Home Work \#1

Problem 1 Solution:

Solution To solve this problem, first convert the delta-connected load 2 to an equivalent wye (by dividing the impedance by 3), and get the per-phase equivalent circuit.

(a) The phase voltage of the equivalent Y -loads can be found by nodal analysis.

$$
\begin{aligned}
& \frac{\mathbf{V}_{\phi, \text { load }}-277 \angle 0^{\circ} \mathrm{V}}{0.09+j 0.16 \Omega}+\frac{\mathbf{V}_{\phi, \text { load }}}{2.5 \angle 36.87^{\circ} \Omega}+\frac{\mathbf{V}_{\phi, \text { load }}}{1.67 \angle-20^{\circ} \Omega}=0 \\
& \left(5.443 \angle-60.6^{\circ}\right)\left(\mathbf{V}_{\phi, \text { load }}-277 \angle 0^{\circ} \mathrm{V}\right)+\left(0.4 \angle-36.87^{\circ}\right) \mathbf{V}_{\phi, \text { load }}+\left(0.6 \angle 20^{\circ}\right) \mathbf{V}_{\phi, \text { load }}=0 \\
& \left(5.955 \angle-53.34^{\circ}\right) \mathbf{V}_{\phi, \text { load }}=1508 \angle-60.6^{\circ} \\
& \mathbf{V}_{\phi, \text { load }}=253.2 \angle-7.3^{\circ} \mathrm{V}
\end{aligned}
$$

Therefore, the line voltage at the loads is $V_{L} \sqrt{3} V_{\phi}=439 \mathrm{~V}$.
(b) The voltage drop in the transmission lines is

$$
\Delta \mathbf{V}_{\text {line }}=\mathbf{V}_{\phi, \text { gen }}-\mathbf{V}_{\phi, \text { load }}=277 \angle 0^{\circ} \mathrm{V}-253.2 \angle-7.3^{\circ}=41.3 \angle 52^{\circ} \mathrm{V}
$$

(c) The real and reactive power of each load is

$$
\begin{aligned}
& P_{1}=3 \frac{V_{\phi}^{2}}{Z} \cos \theta=3 \frac{(253.2 \mathrm{~V})^{2}}{2.5 \Omega} \cos 36.87^{\circ}=61.6 \mathrm{~kW} \\
& Q_{1}=3 \frac{V_{\phi}^{2}}{Z} \sin \theta=3 \frac{(253.2 \mathrm{~V})^{2}}{2.5 \Omega} \sin 36.87^{\circ}=46.2 \mathrm{kvar} \\
& P_{2}=3 \frac{V_{\phi}^{2}}{Z} \cos \theta=3 \frac{(253.2 \mathrm{~V})^{2}}{1.67 \Omega} \cos \left(-20^{\circ}\right)=108.4 \mathrm{~kW} \\
& Q_{2}=3 \frac{V_{\phi}^{2}}{Z} \sin \theta=3 \frac{(253.2 \mathrm{~V})^{2}}{1.67 \Omega} \sin \left(-20^{\circ}\right)=-39.5 \mathrm{kvar}
\end{aligned}
$$

(d) The line current is

$$
\mathbf{I}_{\text {line }}=\frac{\Delta \mathbf{V}_{\text {line }}}{Z_{\text {line }}}=\frac{41.3 \angle 52^{\circ} \mathrm{V}}{0.09+j 0.16 \Omega}=225 \angle-8.6^{\circ} \mathrm{A}
$$

Therefore, the loses in the transmission line are

$$
\begin{aligned}
& P_{\text {line }}=3 I_{\text {line }}{ }^{2} R_{\text {line }}=3(225 \mathrm{~A})^{2}(0.09 \Omega)=13.7 \mathrm{~kW} \\
& Q_{\text {line }}=3 I_{\text {line }}{ }^{2} X_{\text {line }}=3(225 \mathrm{~A})^{2}(0.16 \Omega)=24.3 \mathrm{kvar}
\end{aligned}
$$

(e) The real and reactive power supplied by the generator is

$$
\begin{aligned}
& P_{\text {gen }}=P_{\text {line }}+P_{1}+P_{2}=13.7 \mathrm{~kW}+61.6 \mathrm{~kW}+108.4 \mathrm{~kW}=183.7 \mathrm{~kW} \\
& Q_{\text {gen }}=Q_{\text {line }}+Q_{1}+Q_{2}=24.3 \mathrm{kvar}+46.2 \mathrm{kvar}-39.5 \mathrm{kvar}=31 \mathrm{kvar}
\end{aligned}
$$

The power factor of the generator is

$$
\mathrm{PF}=\cos \left[\tan ^{-1} \frac{Q_{\mathrm{gen}}}{P_{\text {gen }}}\right]=\cos \left[\tan ^{-1} \frac{31 \mathrm{kvar}}{183.7 \mathrm{~kW}}\right]=0.986 \text { lagging }
$$

Problem 2 Solution:

The per-phase equivalent circuit is first constructed. For load 1, a Y-connected balanced load, the per-phase impedance is $150+$ $j 50 \Omega$. For load 2, a Δ-connected balanced load, the per-phase impedance is the equivalent Y-connected load which is $Z_{\Delta} / 3=$ $300+\mathrm{j} 200 \Omega$. We will represent load 3 in terms of the complex power it absorbs per-phase. This is given by

$$
\begin{aligned}
S_{3 / \phi} & =\frac{95040}{3}(0.6-j 0.8) \\
& =19,008-j 25,344 V A
\end{aligned}
$$

The voltage across the per-phase equivalents of these loads has been specified as 4800 V , which is the line-to-neutral voltage at the load end.

The per-phase equivalent circuit is shown below in Figure 3

Figure 3 Per-Phase Equivalent Circuit

$$
\begin{aligned}
\mathbf{I}_{\ell} & =\frac{4800}{150+j 50}+\frac{4800}{300+j 200}+\frac{19,008+j 25,344}{4800} \\
& =28.8-j 9.6+11.0769-j 7.3846+3.96+j 5.28 \\
& =43.8369-j 11.7046 A(\mathrm{rms}) \\
& =45.3725 \angle-14.949^{\circ} \mathrm{A}(\mathrm{rms})
\end{aligned}
$$

In the above step, the total current is obtained by summing the individual currents through the three loads. For loads $1 \& 2$, we use the expression $\mathbf{I}=\frac{\mathbf{V}}{Z}$, and for load 3 the current is determined using $\mathbf{I}=\left(\frac{S}{\mathbf{V}}\right)^{*}$.

In the distribution line,

$$
\begin{aligned}
& P_{\text {loss }}=3\left|I_{\text {eff }}\right|^{2} R=3(45.3725)^{2}(3)=18,528.04 \mathrm{~W} \\
& Q_{\text {loss }}=3\left|I_{\text {eff }}\right|^{2} X=3(45.3725)^{2}(24)=148,224.34 \mathrm{VAR}
\end{aligned}
$$

In each load,

$$
\begin{aligned}
& P_{1}=3|28.8-j 9.6|^{2}(150)=414,720 \mathrm{~W} \\
& Q_{1}=3|28.8-j 9.6|^{2}(50)=138,240 \operatorname{VAR}(a b s) \\
& P_{2}=3|11.0769-j 7.3846|^{2}(300)=159,507.02 \mathrm{~W} \\
& Q_{2}=3|11.0769-j 7.3846|^{2}(200)=106,338.02 \operatorname{VAR}(a b s)
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}=95,040(0.6)=57,024 \mathrm{~W} \\
& Q_{3}=-95,040(0.8)=-76,032 \mathrm{VAR} \\
& S_{\text {total }}=636,251+j 168,546 \mathrm{VA}(\text { load end })
\end{aligned}
$$

Check:

$$
\begin{aligned}
S_{\text {total }} & =3(4800)(43.8369+j 11.74046)=631,251+j 168,546 \mathrm{VA} \\
S_{\text {sending }} & =631,251+j 168,546+18,528.04+j 148,224.34 \mathrm{VA} \\
& =649,779.04+j 316,770.34 \mathrm{VA} \\
\% P & =\frac{631,251}{649,779.04} \times 100=97.148
\end{aligned}
$$

Problem 3 solution:

1. $P f_{\text {source }} \cos \left(\theta_{v}-\theta_{I}\right)=\operatorname{los}\left(0+30^{\circ}\right)=0.866$ lagging
2. $V_{A_{11}}=V_{a n}-Z_{L} I_{L}=2887 \angle 0-(2+j 20) 100 \angle-30^{\circ}$

$$
\begin{aligned}
& V_{A N}=2887-(2+j 20)(86.6-j 50) \\
& V_{A N}=2887-(1173.2+j 1632)=1713.8-j 1632 \\
& V_{A N}=2366.541-43.6^{\circ} \mathrm{V}
\end{aligned}
$$

3. $\quad D f_{\text {lsad }}=\cos \left(\theta_{V}-\theta_{7}\right)=\cos (-43.6+30)=0.972$ leadin a. leading
b. Capacituve
4.

$$
\begin{aligned}
& P=3\left|\bar{V}_{A N}\right| F_{L} \cos \theta_{\text {ond }}=3 \times 2366.54 \times 100 \times 0.972 \\
& Q=3 V_{A N}\left|F_{L}\right| \sin \theta_{\text {ical }}=3 \times 2366.54 \times 100 \times-0.235 \\
& P=690083.064 W \\
& Q=-166942 \text { VAR }
\end{aligned}
$$

Problem 4 Solution:
(a) Assume $\bar{V}_{a n}=\frac{480}{\sqrt{3}} 10^{\circ} \mathrm{V} \quad \bar{V}_{a b}=480 \angle 30^{\circ} \mathrm{V}$

$$
\begin{aligned}
& Z_{Y}=4 / 36.87^{\circ} \Omega^{V} \quad Z_{A}=10 \angle \frac{130^{\circ}}{2} \Omega \\
& S_{Y}=3 \frac{V_{Q}^{2}}{Z_{Y}^{*}}=\frac{V_{L}^{2}}{Z_{Y}^{*}}=\frac{(480)^{2}}{4 L-36.87}=57600 \angle 36.87^{\circ} \\
& S_{Y}=46080+j 34560 \mathrm{VA} \\
& S_{\Delta}=3 \frac{V_{L}^{2}}{Z_{A}^{*}}=3 \frac{480^{2}}{101-30^{\circ}}=69120130^{\circ} \\
& S_{T}=59859.7+j 3456 \mathrm{VA} \\
& \therefore P_{T}+j Q_{T}=105939.7+j 69120 \mathrm{VA} \\
& \therefore=126494.25 \angle 33.12^{\circ} \mathrm{VA} \\
& I_{T}=\frac{8}{\sqrt{3} V_{L}}=\frac{126494.25}{\sqrt{3} 480}=152.14 \mathrm{~A}
\end{aligned}
$$

(b) $S_{\text {cap }}=-j \frac{(480)^{2}}{5}=Q_{c}=-j 46080$ VAR

$$
B_{T_{\text {new }}}=105939.7+j 23040=108416.15 \angle 12.27^{\circ} \mathrm{VA}
$$

(c) $I=\frac{S_{\text {The }}}{\sqrt{3} V_{L}}=\frac{108416.15}{\sqrt{3} 480}=130.4 \mathrm{~A}$

The current is reduced since part of the reactive power is compensated by the eapacitor bank.

