KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE 306 – Term 172

HW # 1: Three-Phase Circuits ST Classes Due: February 4th ; MW Classes February 5th , 2018

Key Solution

Problem # 1: (1-point)

Given the number $A_1 = 5 \angle 30^o$ (in polar form) and $A_2 = -3 + j4$ (in rectangular form). Calculate the following, given the answers in both rectangular and polar forms:

a. $A_1 + A_2$ b. $A_1 * A_2$ c. $A_1/(A_2)^*$

$$A_{1} = 5 / 30^{\circ} = 4.33 + j_{2,50}$$

$$A_{2} = -3 + j_{4} = 5 / 126.9^{\circ}$$

$$A_{1} + A_{2} = 1.33 + j_{6,5} = 6.63 / 78.4^{\circ}$$

$$A_{1} + A_{2} = 25 / 156.9^{\circ} = -23 + j_{9,8}$$

$$A_{1} / A_{2}^{*} = 1 / 156.9^{\circ} = -0.92 + j_{0,39}$$

Problem # 2: (1-point)

A load with an impedance of $Z = 25 \angle 53.1^{\circ} \Omega$ is fed from a single-phase source of 220V.

- a. Find the resistance and reactance of the load.
- b. Find the real (active) and imaginary (reactive) power of the load.
- c. Find the power factor of the load, and state whether it is lagging or leading.

(a)
$$Z = 15 + j 20$$

 $R = 15 52$
 $X = 20 52$
(b) $I = \frac{V}{Z} = \frac{220}{25} \frac{j0}{53.1^{\circ}} = 8.8 \frac{j-53.1^{\circ}}{25 \frac{j53.1^{\circ}}{25 \frac{j53.1^{$

Problem # 3: (2-points)

A delta connected load has per-phase impedance of $45 \angle 60^{\circ} \Omega$ is fed a 208-V 3-phase substation through a 3-phase feeder. The per-phase impedance of the feeder is $(1.2 + j \ 1.6) \Omega$. Calculate the line to line voltage at the load terminals.

Problem # 4: (2-points)

A 345-kV, 3-phase transmission line delivers 500 MVA, 0.866 power factor lagging, to a 3-phase star-connected load.

- a. Find the line and phase currents drawn by the load.
- b. Find the per-phase impedance of the load in polar form.
- c. Find the total active and reactive power of the load.

(a)
$$I_{ph} = \frac{500,000}{\sqrt{3}} \frac{1-604^{-0.856}}{0.856} = 836.74 \frac{1-30^{\circ}}{4} A$$

 $V_{ph} = \frac{345}{\sqrt{3}} \frac{10^{\circ}}{10^{\circ}} = 199.2 \frac{10^{\circ}}{4} V$
 $I_{L} = I_{ph} = 836.74 \frac{1-30^{\circ}}{4} A$
(b) $Z_{Y,ph} = \frac{199.2 \frac{10^{\circ}}{836.74 \frac{1-30^{\circ}}{4}} = 238 \frac{130^{\circ}}{4} 2$
(c) $P_{T} = 433 \text{ MW}$; $Q_{T} = 250 \text{ MUAR}$

Problem # 5: (2-points)

A 3-phase motor draws 40 kVA at 0.65 power factor lagging from a 230-V source. A capacitor bank (i.e., 3-phase capictors) is connected across (i.e., in parallel) the motor terminals to make the compined power factor 0.95 lagging.

- a. Find the required KVAR rating of the capacitor bank.
- b. Find the line current before and after the capacitors are added.

$$S_{M} = 40 \text{ kVA} , V_{M} = 230 \text{ V} , P_{M} = 0.65 \text{ lagging}.$$

$$P_{M} = 40 (0.65) = 26 \text{ kW}$$

$$\Phi_{M} = cod (0.65) = 26 \text{ kW}$$

$$\Phi_{M} = cod (0.65) = 26 \text{ kW}$$

$$\Phi_{M} = cod (0.65) = 49.46^{\circ}.$$
(a) $P_{M} = P_{M} \tan \Phi_{M} = 26 \text{ tan } 49.46^{\circ} = 30.4 \text{ kVAR}$

$$P_{Rew} = 0.95$$

$$\Phi_{Rew} = 0.95$$

$$\Phi_{Rew} = cod (0.45) = 18.19^{\circ}.$$

$$P_{Rew} = Cod (0.45) = 8.54 \text{ kVAR} = 9_{M} + 9_{C}.$$

$$G_{C} = G_{Rew} - 9_{M} = 8.54 - 30.4 = -21.86 \text{ kVAR}$$
(b) $I_{before} = \frac{40.000}{\sqrt{3}(230)} \frac{1-cod(0.5)}{\sqrt{5}(230)} = 100 \frac{1-49.46}{\sqrt{5}(250)(0.95)}.$

$$I_{afta} = \frac{26.000}{\sqrt{5}(250)(0.95)} \frac{1-cod(0.15)}{\sqrt{5}(250)(0.95)} = 68.7 \frac{1-18.19}{\sqrt{5}(2.50)(0.95)}.$$

Problem # 6: (2-points)

A balanced 3-phase, 173-V, 60-Hz source supplies the two following loads:

- A Δ-connected load with a phase impedance of $(18+j24) \Omega$,
- A Y-connected load with a phase impedance of $10 \angle 53.13^{\circ} \Omega$.

Find:

- a. The power factor of the entire load.
- b. The total line current supplied.
- c. The total real, reactive, and apparent powers.

Solution:

Convert
$$\Delta$$
 to Y $Z_y = \frac{18 + j24}{3} = 6 + j8$

Parallel combination of the 2 loads (per phase)

$$Z_{T} = \frac{(6 = j8)(10\angle 53.1^{\circ})}{6 + j8 + 10\angle 53.1^{\circ}} = 5\angle 53.1^{\circ}$$

a. Power factor=
$$cos(53.1^{\circ}) = 0.6 lag$$

b.
$$I_L = I_{ph} = \frac{173/\sqrt{3\angle 0^\circ}}{5\angle 53.1^\circ} = 20\angle -53.1^\circ A$$

c.

$$P_{T} = \sqrt{3}x \, 173x \, 20x \, 0.6 = 3.596 kW$$
$$Q_{T} = \sqrt{3}x \, 173x \, 20x \, 0.8 = 4.794 kVAR$$
$$|S_{T}| = \sqrt{3}x \, 173x \, 20 = 5.993 kVA$$