King Fahd University of Petroleum and Minerals

Electrical Engineering Department

Homework 4 EE-306 – Electromechanical Devices - Semester 171 Submission Deadline: ST Classes (21 Nov 2017)

: MW Classes (21 Nov 2017) : MW Classes (22 Nov 2017) 1

Note: You must submit this cover page along with your solution

Student Name	ID	Sr. #	Section

Total Marks Obtained /	
------------------------	--

Electrical Engineering Department

2

Problem 1

A four pole DC machine has a flux per pole of 15 mWb. The armature has 330 conductors connected as a **wave winding** such that the rated conductor current remains the same. The DC machine runs at 1150 rpm and it delivers a rated armature current of 250 A to a load connected to its terminals.

- (a) Determine the machine constant, K_a
- (b) Determine the generated voltage, E_a
- (c) The conductor current, I_c
- (d) Electromagnetic torque, T_e
- (d) Power developed, P_{dev} , by the armature

Problem 2

Consider a self excited DC shunt generator (12 kW, 100 V, 1000 rpm) as shwon in Fig. 1. It has armature resistance $R_a = 0.1 \Omega$, shunt field winding resistance $R_{fw} = 80 \Omega$, and $N_f = 1200$ turns per pole. The rated field current is 1 A. The magnetization characteristic of the machine at 1000 rpm are shown in Fig. 2. Determine the following assuming that the generator is operating at no load (for clarity, a curve with field resistor line is also shown in Fig. 3):

Figure 1: A self excited (shunt) generator (Problem 2).

- (a) The maximum value of the generated voltage
- (b) The value of the field circuit control resistance (R_{fc}) required to generate rated terminal voltage

King Fahd University of Petroleum and Minerals

Electrical Engineering Department

Figure 2: The mangentization curve of machine (Probem 2).

Figure 3: The mangentization curve of machine including field resistance lines (Probem 2).

Problem 3

A six poles short shunt compound DC generator running at 1200 rpm delivers 25 KW to a load resistance at a terminal voltage of 250 V. The resistance of the armature, shunt field resistance and the series field resistance are 0.12 Ω , 125 Ω and 0.05 Ω respectively. The efficiency of the machine at the given load is 82%.

- (a) Draw the equivalent circuit
- (b) Estimate the input power and the corresponding applied input torque
- (c) Find the developed power and the corresponding developed torque

Problem 4

A 120 V DC shunt motor has armature and field resistances of 0.1 Ω and 120 Ω respectively, and a total brush voltage drop of 2V. The motor operates at rated load and draws a line current of 41 A at an angular speed of 200 rad/sec. Calculate

- (a) The field and armature current
- (b) The developed power and developed torque

3

Electrical Engineering Department

Problem 5

Suppose a 600 V DC series motor with equal armature and field winding resistance of 0.5 Ω is opearing at 500 rpm and taking 75 A when connected to a 600 V supply. If the load torque is reduced to half, determine the following:

- (a) The armature current
- (b) The speed at which it will operate

Problem 6

A 240 V DC shunt motor has an armature resistance of 0.3 Ω and a field resistance of 120 Ω . At no-load, the motor runs at 1000 rpm and it draws a line current of 9 A.

- (a) Draw the equivalent circuit with proper labeling
- (b) Find the efficiency of motor assuming that the input to the motor is 12 kW at full load conditions.

Problem 7

A DC shunt motor (see Fig. 4) has the following parameters:

 $P_{rated} = 30 \text{ hp}, V_T = 240 \text{ V}, R_A = 0.19 \Omega, R_F = 75 \Omega, I_L(rated) = 110 \text{ A}$

Magnetization curve of the given DC motor is shown in Fig. 5.

- (a) If the resistor R_{adj} in Fig. 4 is adjusted to 175 Ω , what is the rotational speed of the motor at no-load conditions?
- (b) Assuming no armature reaction, what is the speed of the motor at full load? What is the speed regulation of the motor?

King Fahd University of Petroleum and Minerals Electrical Engineering Department

5

Figure 4: The equivalent circuit of the shunt motor (Problem 7).

Figure 5: The magnetization curve for the DC motor (Problem 7).

!End of Homework Problems!