Solution HW3 EE306 Term 171

Solution Problem 1

The equivalent circuit referred to the primary side is:

Impedance of the circuit,
$Z=3+j 5-j 20=3+j 3=4.24 \Omega$
$\mathrm{I}_{1}=\frac{20}{4.24}=4.72 \mathrm{~A}$
$\mathrm{V}_{2}^{\prime}=4.72 \times 3=14.15 \mathrm{~V}$
Actual load voltage $V_{2}=100 \times 14.15=1415 \mathrm{~V}$

Solution Problem 2

The secondary voltage and current are

$$
\begin{aligned}
& \mathbf{V}_{S}=\frac{282.8}{\sqrt{2}} \angle 0^{\circ} \mathrm{V}=200 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{I}_{S}=\frac{7.07}{\sqrt{2}} \angle-36.87^{\circ} \mathrm{A}=5 \angle-36.87^{\circ} \mathrm{A}
\end{aligned}
$$

The secondary voltage referred to the primary side is

$$
\mathbf{V}_{s}^{\prime}=a \mathbf{V}_{s}=100 \angle 0^{\circ} \mathrm{V}
$$

The secondary current referred to the primary side is

$$
\mathbf{I}_{S}^{\prime}=\frac{\mathbf{I}_{S}}{a}=10 \angle-36.87^{\circ} \mathrm{A}
$$

The primary circuit voltage is given by

$$
\begin{aligned}
& \mathbf{V}_{P}=\mathbf{V}_{S}^{\prime}+\mathbf{I}_{S}^{\prime}\left(R_{\mathrm{eq}}+j X_{\mathrm{eq}}\right) \\
& \mathbf{V}_{P}=100 \angle 0^{\circ} \mathrm{V}+\left(10 \angle-36.87^{\circ} \mathrm{A}\right)(0.20 \Omega+j 0.750 \Omega)=106.2 \angle 2.6^{\circ} \mathrm{V}
\end{aligned}
$$

The excitation current of this transformer is

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{EX}}=\mathbf{I}_{C}+\mathbf{I}_{M}=\frac{106.2 \angle 2.6^{\circ} \mathrm{V}}{300 \Omega}+\frac{106.2 \angle 2.6^{\circ} \mathrm{V}}{j 80 \Omega}=0.354 \angle 2.6^{\circ}+1.328 \angle-87.4^{\circ} \\
& \mathbf{I}_{\mathrm{EX}}=1.37 \angle-72.5^{\circ} \mathrm{A}
\end{aligned}
$$

Therefore, the total primary current of this transformer is

$$
\mathbf{I}_{p}=\mathbf{I}_{S}^{\prime}+\mathbf{I}_{\mathrm{EX}}=10 \angle-36.87^{\circ}+1.37 \angle-72.5^{\circ}=11.1 \angle-41.0^{\circ} \mathrm{A}
$$

Solution Problem 3

OPEN CIRCUIT TEST:
$\left|Y_{\mathrm{EX}}\right|=\left|G_{C}-j B_{M}\right|=\frac{0.45 \mathrm{~A}}{230 \mathrm{~V}}=0.001957$
$\theta=\cos ^{-1} \frac{P_{\mathrm{OC}}}{V_{\mathrm{OC}} I_{\mathrm{OC}}}=\cos ^{-1} \frac{30 \mathrm{~W}}{(230 \mathrm{~V})(0.45 \mathrm{~A})}=73.15^{\circ}$
$Y_{\mathrm{EX}}=G_{C}-j B_{M}=0.001957 \angle-73.15^{\circ} \mathrm{mho}=0.000567-j 0.001873 \mathrm{mho}$
$R_{C}=\frac{1}{G_{C}}=1763 \Omega$
$X_{M}=\frac{1}{B_{M}}=534 \Omega$
Transformer ratio $=a=2$
Hence
$R_{C, s}=R_{C /} a^{2}=1763 / 4=440.75 \mathrm{ohm}$
$X_{M, s}=X_{M /} a^{2}=534 / 4=\mathbf{j} 133.5 \mathrm{ohm}$

SHORT CIRCUIT TEST:

$$
\begin{aligned}
& \left|Z_{\mathrm{EQ}}\right|=\left|R_{\mathrm{EQ}}+j X_{\mathrm{EQ}}\right|=\frac{19.1 \mathrm{~V}}{8.7 \mathrm{~A}}=2.2 \Omega \\
& \theta=\cos ^{-1} \frac{P_{\mathrm{SC}}}{V_{\mathrm{SC}} I_{\mathrm{SC}}}=\cos ^{-1} \frac{42.3 \mathrm{~W}}{(19.1 \mathrm{~V})(8.7 \mathrm{~A})}=75.3^{\circ} \\
& Z_{\mathrm{EQ}}=R_{\mathrm{EQ}}+j X_{\mathrm{EQ}}=2.20 \angle 75.3^{\circ} \Omega=0.558+j 2.128 \Omega \\
& R_{\mathrm{EQ}}=0.558 \Omega \\
& X_{\mathrm{EQ}}=j 2.128 \Omega
\end{aligned}
$$

Here
$R_{\text {eq } S}=R_{E Q}=0.588 \mathrm{ohm}$
$X_{e q S}=X_{E Q}=\mathbf{j} 2.128 \mathrm{ohm}$
(b) The resulting equivalent circuit is shown below:

Solution Problem 4
(a)
(i)

$$
\begin{aligned}
& \left.I_{H V}\right|_{N L}=\frac{11000}{57600}+\frac{11000}{j 16.34}=0.7 /-74.2^{\circ} \mathrm{A} \\
& I_{H V(\text { rated })}=\frac{300 \times 10^{3}}{11 \times 10^{3}}=27.27 \mathrm{~A} . \\
& I_{\frac{N L}{\text { FL (rated }}} \text { in } \%=\frac{0.7}{27.27} \times 100=2.57 \%
\end{aligned}
$$

(ii) $P_{N L}=P_{\text {core }}=\frac{11000^{2}}{57600}=2100 \mathrm{~W}$
(iii) $\left.P F\right|_{N L}=\cos 74.2^{\circ}=0.27$ logging

$$
\text { (iv) } P_{c u, F L}=27.27^{2} \times 2.784=2070 \mathrm{~W} \text {. }
$$

(b) $I_{L V}=\frac{2200}{16 \angle 60^{\circ}}=137.5 \angle-60^{\circ} \mathrm{A}$.

Referred to $H V$ sigh, $\left(a=\frac{11000}{2.2}=5\right)$

$$
\begin{aligned}
& I_{L V}^{\prime}= \frac{137.5}{5}=27.50 \angle-60^{\circ} \mathrm{A} . \\
& V_{H V}= 11000 L 0^{\circ}+27.5 L-60^{\circ} \\
& \times(2.74+j 8.45) \quad \underbrace{}_{27.5 L-60^{\circ}} V_{V L V}^{\prime}=11000 \mathrm{~V} \\
&=11,239 \angle 0.3^{\circ} \mathrm{V} .
\end{aligned}
$$

Solution Problem 5
(a)

$$
\theta_{\text {eq }}=\tan ^{-1} \frac{5}{4}=51.34^{\circ}
$$

For worst ease VR $\rightarrow \theta_{2}=-51.34^{\circ}$ and V_{L}^{\prime} and V_{H} are in phase.

$$
\begin{aligned}
& I_{H}=\frac{25000}{2300}=10.87 \mathrm{~A} \\
& Z_{e q H}=\sqrt{4^{2}+5^{2}}=6.4 \Omega \\
& I_{H} Z_{\text {eq H }}=10.87 \times 6.4=69.6 \mathrm{~V} \\
& V R=\frac{69.6}{2300} \times 100 \%=3.03 \%
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P_{\text {out }}=25 \times 0.85=21.25 \mathrm{kw} \\
& P_{\text {cu }}=I_{H}{ }^{2} R_{\text {eeg }}=10.87^{2} \times 4=472.63 \mathrm{~W} \\
& P_{\text {core }}=\frac{230^{2}}{450}=117.56 \mathrm{~W} \\
& E f f=\frac{21,250}{21,250+472.63+117.56} \times 100 \%=97.3 \%
\end{aligned}
$$

(c)

$$
\begin{aligned}
& X=\sqrt{\frac{117.56}{472.63}=0.499} \\
& P_{\text {en }}=P_{\text {cove }}=117.56 \mathrm{~W} \\
& P_{\text {ont }}=25 \times 0.499=12.475 \mathrm{KW} \\
& \text { Eff }=\frac{12475}{12475+117.56+117.56} \times 100 \%=98.15 \%
\end{aligned}
$$

Solution Problem 6

$$
\begin{aligned}
& P_{\text {ont }}=10 \times 0.8=8 \mathrm{~kW} \\
& P_{\text {core }}=100 \mathrm{~W}, P_{\text {cu, FL }}=60 \times 2^{2}=240 \mathrm{~W} \\
& E_{\text {ff }}=\frac{8000}{8000+100+240} \times 100 \%=95.92 \%
\end{aligned}
$$

