KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE-520 (171)

Dr. Ibrahim O. Habiballah

Home Work 3

Q.1) A 4-bus system has the following line and bus data (on the base of 100MVA, 230kV base):

Line-Data

Bus-to-Bus	R (per-unit)	X (per-unit)	Y/2 (per-unit)
1-2	0.01008	0.05040	0.05125
1-3	0.00744	0.03720	0.03875
2-4	0.00744	0.03720	0.03875
3-4	0.01272	0.06360	0.06375

Bus-Data

Bus	Туре	$\mathbf{P}_{\mathbf{G}}$	Q _G	P _D	QD	V	Qmax
		(MW)	(MW)	(MW)	(MW)	(per-unit)	(MVAR)
1	Slack	-	-	50	30.99	1.0	-
2	Load	0	0	170	105.35	-	-
3	Load	0	0	200	123.94	-	-
4	Voltage Controlled	318	-	80	49.58	1.02	125

- a) Ignoring the reactive power limit of bus 4, use Gauss-Seidel method to calculate the first two iterations bus voltages with acceleration factor $\alpha = 1.6$.
- b) Considering the reactive power limit of bus 4, use Gauss-Seidel method to calculate ONLY the first iteration bus voltages with acceleration factor $\alpha = 1.6$.

Q.2) A 3-bus system has the following line and bus data (on the base of 100MVA, 230kV base):

Line-Data

Bus-to-Bus	R (per-unit)	X (per-unit)		
1-2	0.02	0.04		
1-3	0.01	0.03		
2-3	0.0125	0.025		

Bus-Data

Bus	Tymo	PG	QG	PD	QD	V
	Туре	(MW)	(MW)	(MW)	(MW)	(per-unit)
1	Slack	-	-	0	0	1.05
2	Load	0	0	400	250	-
3	Voltage Controlled	200	-	0	0	1.04

- a) Use Newton-Raphson (Polar-Form) method to calculate P_1 , Q_1 , and Q_3 (considering mismatch voltage tolerance of $\varepsilon = 2.5 \times 10^{-4}$ for both magnitudes and phase-angles, and maximum number of iteration 5).
- b) Use Newton-Raphson (Rectangular-Form) method to calculate P_1 , Q_1 , and Q_3 (considering mismatch voltage tolerance of $\epsilon = 2.5 \text{ x } 10^{-4}$ for both real and imaginary, and maximum number of iteration 15).
- c) Use Decoupled method to calculate P_1 , Q_1 , and Q_3 (considering mismatch voltage tolerance of ε = 2.5 x 10⁻⁴ for both magnitudes and phase-angles, and maximum number of iteration 15).
- d) Use Fast-Decoupled method to calculate P_1 , Q_1 , and Q_3 (considering mismatch voltage tolerance of $\varepsilon = 2.5 \times 10^{-4}$ for both magnitudes and phase-angles, and maximum number of iteration 15).