KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE-306

Key Solution

Quiz 1	Sec.: 4	I.D.:	Ser#:	Name:
--------	---------	-------	-------	-------

Q.1 A three-phase 460 V substation bus supplies two connected loads that are connected in parallel. Load 1 (Y-connected) draws 40 kW at 0.8 leading power factor, and load 2 (delta-connected) draws 50 kVA at 0.6 lagging power factor.

Total real and reactive power supplied by the substation bus is

a.	P = 70.0 kW	;	Q = 10.0 kVAR (inductive)
b.	P = 70.0 kW	;	Q = 10.0 kVAR (capacitive)
c.	P = 62.0 kW	;	Q = 90.0 kVAR (inductive)
d.	P = 62.0 kW	;	Q = 90.0 kVAR (capacitive)

 $P_{total} = 40 + 50(0.6) = 70 \text{ kW}$

 $Q_{L1} = 40 * (\sin (\cos^{-1}(.8))/0.8) = 30 \text{ kVAR} (\text{capactive})$

 $Q_{L2} = 50 \sin (\cos^{-1}(.6)) = 40$ (inductive)

 $Q_{total} = -30 + 40 = 10 \text{ kVAR}$ (inductive)

Q.2 For a Delta-Wye balanced three-phase source-load connection

a. the source line-current magnitude equals the load phase-current magnitude.

b. the source line-voltage magnitude equals the load line-voltage magnitude.

c. the source phase-voltage magnitude equals the load line-voltage magnitude.

d. all of the above