KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE-306

Key Solution

Quiz 1 Sec.: 3 I.D.: Ser#: Nam

Q.1 A three-phase substation bus supplies two wye-connected loads that are connected in parallel. Load 1 draws 40 kW at 0.8 lagging power factor, and load 2 draws 50 kVA at 0.6 leading power factor. The line-to-line voltage at the loads is 460 V.

Total real and reactive power supplied by the substation bus is

a.	P = 70.0 kW	;	Q = 10.0 kVAR (inductive)
b.	P = 70.0 kW	;	Q = 10.0 kVAR (capacitive)
c.	P = 62.0 kW	;	Q = 90.0 kVAR (inductive)
d.	P = 62.0 kW	;	Q = 90.0 kVAR (capacitive)

$P_{total} = 40 + 50(0.6) = 70 \text{ kW}$

 $Q_{L1} = 40 * (\sin (\cos^{-1}(.8))/0.8) = 30 \text{ kVAR} (inductive)$

 $Q_{L2} = 50 \sin (\cos^{-1}(.6)) = 40$ (capacitive)

$Q_{total} = 30 - 40 = -10 \text{ kVAR} = 10 \text{ kVAR}$ (capacitive)

Q.2 In a Wye-connected source feeding a Delta-connected load,

a. phase-voltage magnitude of the load is one-third the source line-voltage magnitude.

b. phase-voltage magnitude of the load is the source line-voltage magnitude.

- c. phase-voltage magnitude of the load is the source line-voltage magnitude divided by $\sqrt{3}$.
- d. phase-voltage magnitude of the load is the source line-voltage magnitude multiplied by $\sqrt{3}$.