KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim Omar Habiballah

EE-306 (141)

Key Solutions

Quiz 1	Sec.: 1	Serial:	I.D.:	Name:
--------	---------	---------	-------	-------

Q.1 Three-phase 230-V source is connected via a transmission line to a Y-connected load. The per-phase impedance of the transmission line is 1 Ohm. The per-phase impedance of the load is 3 + j4 Ohm. The phase and line currents of the load are

a.	$\mathbf{I}_{\mathrm{ph}} = 23.48 \ \mathbf{\square - 45^{o}} \ \mathbf{A}$;	$I_{\text{Line}} = 23.48 \ \square - 45^{\circ} \text{ A}$
b.	$I_{ph} = 23.48 \ \ - 45^{o} A$;		$I_{Line} = 40.67 \ \ - 75^{\circ} A$
c.	$I_{ph} = 40.67 \ \mbox{${\sc L}$-$} 75^{o} \ A ; \qquad$		$I_{Line} = 40.67 \ \square - 75^{\circ} A$
d.	$I_{ph} = 26.56 \ \ - 53.13^{\circ} A$;		$I_{Line} = 26.56 \ \ - 53.13^{\circ} \ A$

Q.2 Three-phase 230-V source is connected via a transmission line to a Y-connected load. The per-phase impedance of the transmission line is 1 Ohm. The per-phase impedance of the load is 3 + j4 Ohm. The phase and line voltages of the load are

a.	$V_{ph} = 132.7 \ \Box 0^{\circ} V ; $	$V_{\text{Line}} = 230 \ \square \ 30^{\circ} \ \text{V}$
b.	$V_{ph} = 117.4 \ L \ 8.13^{\circ} \ V$;	$V_{Line} = 117.4 \ {\rm {\ \ }} 8.13^o \ V$
c.	$V_{ph} = 117.4 \ {oxed 8.13}^{\circ} V$; $V_{\text{Line}} = 203 \perp 38.13^{\circ} \text{ V}$