KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 ELECTRICAL ENGINEERING DEPARTMENT
 EE-520 (141)
 Dr. Ibrahim O. Habiballah

Key Solutions

Home Work 2 (Due Date: November $5^{\text {th }}$, 2014)
Q.1) A 4-bus system has the following line and bus data (on the base of 100MVA, 230kV base):

Line-Data

Bus-to-Bus	\mathbf{R} (per-unit)	\mathbf{X} (per-unit)	$\mathbf{Y / 2}$ (per-unit)
$1-2$	0.01008	0.05040	0.05125
$1-3$	0.00744	0.03720	0.03875
$2-4$	0.00744	0.03720	0.03875
$3-4$	0.01272	0.06360	0.06375

Bus-Data

Bus	Type	$\mathbf{P}_{\mathbf{G}}$ $(\mathbf{M W})$	$\mathbf{Q}_{\mathbf{G}}$ $(\mathbf{M W})$	$\mathbf{P}_{\mathbf{D}}$ $(\mathbf{M W})$	$\mathbf{Q}_{\mathbf{D}}$ $(\mathbf{M W})$	\mathbf{V} (per-unit)	$\mathbf{Q}_{\text {max }}$ (MVAR)
1	Slack	-	-	50	30.99	1.0	-
2	Load	0	0	170	105.35	-	-
3	Load	0	0	200	123.94	-	-
4	Voltage Controlled	318	-	80	49.58	1.02	$125+^{*}$

* your two-digit serial numbers
a) Ignoring the reactive power limit of bus 4 , use Gauss-Seidel method to calculate the first two iterations bus voltages with acceleration factor $\alpha=1.6$.
b) Considering the reactive power limit of bus 4 , use Gauss-Seidel method to calculate ONLY the first iteration bus voltages with acceleration factor $\alpha=1.6$.

Solution:

Bus admittance matrix

Bus no.	(1)	(2)	(3)	(4)
(1)	$\begin{array}{r} 8.985190 \\ -j 44.835953 \end{array}$	$\begin{array}{r} -3.815629 \\ +j 19.078144 \end{array}$	$\begin{array}{r} -5.169561 \\ +j 25.847809 \end{array}$	0
(2)	$\begin{array}{r} -3.815629 \\ +j 19.078144 \end{array}$	$\begin{array}{r} 8.985190 \\ -j 44.835953 \end{array}$	0	$\begin{array}{r} -5.169561 \\ +j 25.847809 \end{array}$
(3)	$\begin{array}{r} -5.169561 \\ +j 25.847809 \end{array}$	0	$\begin{array}{r} 8.193267 \\ -j 40.863838 \end{array}$	$\begin{array}{r} -3.023705 \\ +j 15.118528 \end{array}$
(4)	0	$\begin{array}{r} -5.169561 \\ +j 25.847809 \end{array}$	$\begin{array}{r} -3.023705 \\ +j 15.118528 \end{array}$	$\begin{array}{r} 8.193267 \\ -j 40.863838 \end{array}$

Q.1-a)

Iteration \# 1

$$
\begin{aligned}
V_{2}^{(1)}= & \frac{1}{Y_{22}}\left[\frac{-1.7+j 1.0535}{1.0+j 0.0}-1.00(-3.815629+j 19.078144)\right. \\
& -\mathbf{1 . 0 2 (- 5 . 1 6 9 5 6 1 + j 2 5 . 8 4 7 8 0 9)]} \\
= & \frac{1}{Y_{22}}[-1.7+j 1.0535+9.088581-j 45.442909] \\
= & \frac{7.388581-j 44.389409}{8.985190-j 44.835953}=\mathbf{0 . 9 8 3 5 6 4 - j 0 . 0 3 2 3 1 6} \\
V_{2, a c c}^{(l)}= & \mathbf{1}+\mathbf{1 . 6}[(\mathbf{0 . 9 8 3 5 6 4 - \mathbf { j } 0 . 0 3 2 3 1 6) - 1] = \mathbf { 0 . 9 7 3 7 0 3 - j } \mathbf { 0 . 0 5 1 7 0 6 } \quad \mathbf { p u }} \\
V_{3, a c c}^{(l)}= & \mathbf{0 . 9 5 3 9 4 9 - \mathbf { j } 0 . 0 6 6 7 0 8 \quad \mathbf { p u }} \\
Q_{4}^{(1)}= & -\operatorname{Im}\left\{\begin{array}{r}
1.02[(-5.169561+j 25.847809)(0.973703-j 0.051706) \\
+(-3.023705+j 15.118528)(0.953949-j 0.066708) \\
+(8.193267-j 40.863838)(1.02)]
\end{array}\right\} \\
= & -\operatorname{Im}\{1.02[-5.573064+j 40.059396+(8.193267-j 40.863838) 1.02]\} \\
= & 1.654151 \text { per unitr}
\end{aligned}
$$

$$
\begin{aligned}
&\left.\begin{array}{rl}
V_{4}^{(1)} & = \\
Y_{44}
\end{array} \frac{P_{4, \mathrm{sch}}-j Q_{4}^{(1)}}{V_{4}^{(0) *}}-\left(Y_{42} V_{2, \mathrm{acc}}^{(1)}+Y_{43} V_{3, \mathrm{acc}}^{(1)}\right)\right] \\
&=\frac{1}{Y_{44}}\left[\frac{2.38-j 1.654151}{1.02-j 0.0}-(-5.573066+j 40.059398)\right] \\
&=\frac{7.906399-j 41.681115}{8.193267-j 40.863838}=1.017874-j 0.010604 \text { per unit } \\
& V_{4, \text { corr }}^{(1)}=\frac{1.02}{1.017929}(1.017874-j 0.010604) \\
&=1.019945-j 0.010625 \text { per unit }
\end{aligned}
$$

Iteration \# 2

$$
\begin{aligned}
V_{2}^{(2)} & =\frac{1}{Y_{22}}\left[\frac{P_{2, \mathrm{sch}}-j Q_{2, \mathrm{sch}}}{V_{2}^{(1)_{*}}}-\left(Y_{21} V_{1}^{(1)}+Y_{24} V_{4, \mathrm{acc}}^{(1)}\right)\right] \\
& =\frac{1}{Y_{22}}\left[\frac{-1.7+j 1.0535}{0.981113+j 0.031518}-\{-3.815629+j 19.078144\right. \\
& +(-5.169561+j 25.847809)(1.019922+j 0.012657)\}] \\
& =\frac{7.718854-j 44.247184}{8.985190-j 44.835953} \\
& =0.9819338-j 0.0246233
\end{aligned}
$$

$$
\begin{aligned}
V_{2, \mathrm{acc}}^{(2)}= & 0.981113-j 0.031518+1.6(0.9819338-j 0.0246233 \\
& -0.9819338+j 0.0246233) \\
= & 0.982426-j 0.020486
\end{aligned}
$$

$$
\begin{aligned}
V_{3}^{(2)} & =\frac{1}{Y_{33}}\left[\frac{P_{3, \mathrm{sch}}-j Q_{3, \mathrm{sch}}}{V_{3}^{(1)_{\star}}}-\left(Y_{31} V_{1}^{(2)}+Y_{34} V_{4, \mathrm{acc}}^{(1)}\right)\right] \\
& =\frac{1}{Y_{33}}\left[\frac{-2+j 1.2394}{0.966597+j 0.040797}-\{-5.16956+j 25.847809\right. \\
& +(-3.023705+j 15.118528)(1.019922+j 0.012657)\}] \\
& =\frac{6.433447-j 39.862133}{8.193267-j 40.863838} \\
& =0.9681332-j 0.0366761
\end{aligned}
$$

$$
\begin{aligned}
& V_{3, \mathrm{acc}}^{(2)}= 0.966597-j 0.00 .040797+1.6(0.9681332-j 0.0366761 \\
&\quad-0.966597+j 0.00 .040797) \\
&= 0.969055-j 0.034195 \\
& \begin{aligned}
& Q_{4}^{(2)}=- \operatorname{Im}\left\{V_{4}^{(1)} \star\left[Y_{42} V_{2}^{(2)}+Y_{43} V_{3}^{(2)}+Y_{44} V_{4}^{(1)}\right]\right\} \\
&=- \\
& I m\{(1.019922-j 0.012657) \\
& \times[(-5.16956+j 25.847809)(0.982426-j 0.020486) \\
&+(-3.023705+j 15.118528)(0.969055-j 0.034195) \\
&+(8.193267-j 40.863837)(1.019922+j 0.012657)]\}
\end{aligned} \\
&(1)
\end{aligned}
$$

$=-\operatorname{Im}\{1.911362-j 1.320680\}=1.320680$

$$
\begin{aligned}
& V_{4}^{(2)}=\frac{1}{Y_{44}}\left[\frac{P_{3, \text { sch }}-j Q_{4}^{(2)}}{V_{4}^{(1)}}-\left(Y_{42} V_{2}^{(2)}+Y_{43} V_{3}^{(2)}\right)\right] \\
&=\frac{1}{Y_{44}}\left[\frac{2.38-j 1.320680}{1.019922-j 0.012657}\right. \\
&-\{(-5.16956+j 25.847809)(0.982426-j 0.020486) \\
&+(-3.023705+j 15.118528)(0.969055-j 0.034195)\}] \\
&=\frac{9.311570-j 41.519274}{8.193267-j 40.863838} \\
&=1.020695+j 0.023217
\end{aligned}
$$

$$
\begin{aligned}
V_{4, \text { corr }}^{(2)} & =\frac{1.02}{1.020959}(1.020695+j 0.023217) \\
& =1.019736+j 0.023195
\end{aligned}
$$

Q.1-b)

The net power injection found at bus (4)
$Q_{4}=1.654151$ per unit $=165.4151$ Mvar
Considering the reactive load of 49.58 Mvar at the bus, the required reactive power generation is $165.4151+49.58=214.9951 \mathrm{Mvar}$, which exceeds the 125 Mvar limit specified. The bus is now regarded as a load bus, with total reactive power generation of 125 Mvar . So the net injected reactive power in this case is

$$
125-49.58=75.42 \mathrm{Mvar}=0.7521 \text { per unit }
$$

V_{4} is now calculated as

$$
\begin{aligned}
V_{4}^{(1)} & =\frac{1}{Y_{44}}\left[\frac{P_{4, s c h}-j Q_{4}^{(1)}}{V_{4}^{(0)^{*}}}-\left(Y_{42} V_{2, a c c}^{(1)}+Y_{43} V_{3, c c c}^{(1)}\right)\right] \\
& =\frac{1}{8.193267-j 40.863838}\left[\frac{2.38-j 0.7542}{1.02}-(-5.573064+j 40.05939)\right] \\
& =0.997117-j 0.006442 \text { per unit }
\end{aligned}
$$

and using an acceleration factor of 1.6 yields

$$
V_{4, a c c}^{(1)}=1.02+1.6(0.997117-j 0.06442-1.02)=0.983387-j 0.0103073 \text { per unit }
$$

Q.2) A 3-bus system has the following line and bus data (on the base of $100 \mathrm{MVA}, 230 \mathrm{kV}$ base):

Line-Data

Bus-to-Bus	R (per-unit)	X (per-unit)
$1-2$	0.02	0.04
$1-3$	0.01	0.03
$2-3$	0.0125	0.025

Bus-Data

Bus	Type	$\mathbf{P}_{\mathbf{G}}$ $(\mathbf{M W})$	$\mathbf{Q}_{\mathbf{G}}$ $(\mathbf{M W})$	$\mathbf{P}_{\mathbf{D}}$ $(\mathbf{M W})$	$\mathbf{Q}_{\mathbf{D}}$ $(\mathbf{M W})$	\mathbf{V} (per-unit)
1	Slack	-	-	0	0	1.05
2	Load	0	0	400	250	-
3	Voltage Controlled	$200+^{*}$	-	0	0	1.04

* your two-digit serial numbers
a) Use Newton-Raphson (Polar-Form) method to calculate P_{1}, Q_{1}, and Q_{3} (considering mismatch voltage tolerance of $\boldsymbol{\varepsilon}=\mathbf{2 . 5} \mathbf{x 1 0} \mathbf{1 0}^{-4}$ for both magnitudes and phase-angles, and maximum number of iteration $\mathbf{5}$).
b) Use Fast-Decoupled method to calculate $\mathrm{P}_{1}, \mathrm{Q}_{1}$, and Q_{3} (considering mismatch voltage tolerance of $\boldsymbol{\varepsilon}=\mathbf{2 . 5} \mathbf{x} \mathbf{1 0}$ - for both magnitudes and phase-angles, and maximum number of iteration 15).

Important Notes:

$>$ In all parts, show all steps clearly.
$>$ If you are writing any programming routines, attach it with the solutions.
$>$ Using ready-made Load-Flow programs (such as ETAP, Power-World Simulator, Power Tool Box in MATLAB, \ldots. .etc) are NOT allowed.

Solution:

Q.2-a)

- Using the Newton-Raphson PF, find the power flow solution

$$
\begin{array}{lr}
y_{12}=10-j 20 p u & \mathbf{3} \\
y_{13}=10-j 30 p u & \left|V_{3}\right|=\mathbf{1 .} .(\\
y_{23}=16-j 32 p u & 200 \mathrm{MV} \\
S_{2}^{s c h}=-\frac{400+j 250}{100}=-4.0-j 2.5 p u \\
P_{3}^{s c h}=\frac{200}{100}=2.0 p u &
\end{array}
$$

$$
Y_{\text {bus }}=\left[\begin{array}{ccc}
20-j 50 & -10+j 20 & -10+j 30 \\
-10+j 20 & 26-j 52 & -16+j 32 \\
-10+j 30 & -16+j 32 & 26-j 62
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
53.9 \angle-1.90 & 22.4 \angle 2.03 & 31.6 \angle 1.89 \\
22.4 \angle 2.03 & 58.1 \angle-1.11 & 35.8 \angle 2.03 \\
31.6 \angle 1.89 & 35.8 \angle 2.03 & 67.2 \angle-1.17
\end{array}\right] \text { angles are in radians }
$$

$$
P_{2}=\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}\right|^{2}\left|Y_{22}\right| \cos \left(\theta_{22}\right)+\left|V_{2}\right|\left|V_{3} \| Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
$$

$$
P_{3}=\left|V_{3}\right|\left|V_{1} \| Y_{31}\right| \cos \left(\theta_{31}-\delta_{3}+\delta_{1}\right)+\left|V_{3}\right|\left|V_{2}\right|\left|Y_{32}\right| \cos \left(\theta_{32}-\delta_{3}+\delta_{2}\right)+\left|V_{3}\right|^{2}\left|Y_{33}\right| \cos \left(\theta_{33}\right)
$$

$$
Q_{2}=-\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \sin \left(\theta_{21}-\delta_{2}+\delta_{1}\right)-\left|V_{2}\right|^{2}\left|Y_{22}\right| \sin \left(\theta_{22}\right)-\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
$$

$$
\bar{x}=\left[\begin{array}{l}
\bar{\delta}_{2} \\
\bar{\delta}_{3} \\
\bar{V}_{2}
\end{array}\right] \quad f(\bar{x})=\left[\begin{array}{l}
P_{2}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right) \\
P_{3}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right) \\
Q_{2}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right)
\end{array}\right]
$$

$$
\left[\left|\bar{V}_{2}\right||1.05||22.3| \cos \left(2.03-\bar{\delta}_{21}\right)+\left|\bar{V}_{2}\right|^{2}|58.1| \cos (-1.11)+\left|\bar{V}_{2}\right||1.04||35.8| \cos \left(2.03-\bar{\delta}_{2}+\bar{\delta}_{3}\right)\right.
$$

$$
\left[-\left|\bar{V}_{2}\right||1.05| 22.3\left|\sin \left(2.03-\bar{\delta}_{2}\right)-\left|\bar{V}_{2}\right|^{2}\right| 58.1\left|\sin (-1.11)-\left|\bar{V}_{2}\right|\right| 1.04 \| 35.8 \mid \sin \left(2.03-\bar{\delta}_{2}+\bar{\delta}_{3}\right)\right]
$$

$$
\Delta c=\left[\begin{array}{c}
\Delta P_{2} \\
\Delta P_{3} \\
\Delta Q_{2}
\end{array}\right]=c-f(\bar{x})=\left[\begin{array}{c}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{s c h}
\end{array}\right]-\left[\begin{array}{l}
P_{2}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right) \\
P_{3}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right) \\
Q_{2}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]-\left[\begin{array}{l}
P_{2}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right) \\
P_{3}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right) \\
Q_{2}\left(\bar{\delta}_{2}, \bar{\delta}_{3}, \bar{V}_{2}\right)
\end{array}\right]
$$

$$
\begin{aligned}
& \frac{\partial P_{2}}{\partial \delta_{2}}=\sum_{j=1, j \neq 2}^{3}\left|V_{2}\right|\left|V_{j} \| Y_{2 j}\right| \sin \left(\theta_{2 j}-\delta_{2}+\delta_{j}\right) \\
& =\left|V_{2}\right|\left|V _ { 1 } \left\|Y_{21}\left|\sin \left(\theta_{21}-\delta_{2}\right)+\left|V_{2}\right| V_{3} \| Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)\right.\right. \\
& =\left|V_{2}\right| 1.05| | 22.4\left|\sin \left(2.03-\delta_{2}\right)+\left|V_{2}\right|\right| 1.04| | 35.8 \mid \sin \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \frac{\partial P_{2}}{\partial \delta_{3}}=-\left|V_{2} \| V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)=-\left|V_{2}\right||1.04||35.8| \sin \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \frac{\partial P_{2}}{\partial\left|V_{2}\right|}=2\left|V_{2}\right|\left|Y_{22}\right| \cos \left(\theta_{22}\right)+\sum_{j=1, j \neq 2}^{3}\left|V_{j}\right|\left|Y_{2 j}\right| \cos \left(\theta_{2 j}-\delta_{2}+\delta_{j}\right) \\
& =2\left|V_{2}\right|\left|Y_{22}\right| \cos \left(\theta_{22}\right)+\left|V_{2}\right|\left|Y_{21}\right| \cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right) \\
& =2\left|V_{2}\right||58.1| \cos (2.03)+|1.05| 22.4 \mid \cos \left(2.03-\delta_{2}\right) \\
& +|1.04| 35.8 \mid \cos \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \frac{\partial P_{3}}{\partial \delta_{2}}=-\left|V_{3}\right| V_{2}\left|Y_{32}\right| \sin \left(\theta_{32}-\delta_{3}+\delta_{2}\right)=-|1.04|\left|Y_{2} \| 35.8\right| \sin \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \left.\frac{\partial P_{3}}{\partial \delta_{3}}=\sum_{j=1, j, j 3}^{3}\left|V_{3}\right| V_{j}| | Y_{3 j} \right\rvert\, \sin \left(\theta_{3 j}-\delta_{3}+\delta_{j}\right) \\
& =\left|V_{3}\right|\left|V_{1}\right| Y_{31}\left|\sin \left(\theta_{31}-\delta_{3}+\delta_{1}\right)+\left|Y_{3}\right| Y_{2}\right| Y_{32} \mid \sin \left(\theta_{32}-\delta_{3}+\delta_{2}\right) \\
& =|1.04||1.05||31.6| \sin \left(1.89-\delta_{3}\right)+|1.04|\left|V_{2}\right||35.8| \sin \left(2.03-\delta_{3}+\delta_{2}\right) \\
& \frac{\partial P_{3}}{\partial\left|V_{2}\right|}=\left|V_{3}\right| Y_{32}\left|\cos \left(\theta_{32}-\delta_{3}+\delta_{2}\right)=|1.04| 35.8\right| \cos \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \frac{\partial Q_{2}}{\partial \delta_{2}}=\sum_{j=1, j \neq 2}^{3}\left|V_{2}\right|\left|V_{j} \|\left|Y_{2 j}\right| \cos \left(\theta_{2 j}-\delta_{2}+\delta_{j}\right)\right. \\
& =\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right) \\
& =\left|V_{2}\right||1.05||22.4| \cos \left(2.03-\delta_{2}\right)+\left|V_{2}\right||1.04||35.8| \cos \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \frac{\partial Q_{2}}{\partial \delta_{3}}=-\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right)=-\left|V_{2}\right||1.04||35.8| \cos \left(2.03-\delta_{2}+\delta_{3}\right) \\
& \frac{\partial Q_{2}}{\partial\left|V_{2}\right|}=-2\left|V_{2}\right|\left|Y_{22}\right| \sin \left(\theta_{22}\right)-\sum_{j=1, j \neq 2}^{3}\left|V_{j}\right|\left|Y_{2 j}\right| \sin \left(\theta_{2 j}-\delta_{2}+\delta_{j}\right) \\
& =-2\left|V_{2}\right|\left|Y_{22}\right| \sin \left(\theta_{22}\right)-\left|V_{1}\right|\left|Y_{21}\right| \sin \left(\theta_{21}-\delta_{2}+\delta_{1}\right)-\left|V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right) \\
& =-2\left|V_{2}\right||58.1| \sin (-1.11)-|1.05||22.4| \sin \left(2.03-\delta_{2}\right) \\
& -|1.04||35.8| \sin \left(2.03-\delta_{2}+\delta_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}^{[k+1]}=\bar{x}^{[k]}+J^{-1} \cdot \Delta c^{[k]} \\
& =\left[\begin{array}{l}
\overline{\boldsymbol{\delta}}_{2} \\
\overline{\boldsymbol{\delta}}_{3} \\
\bar{V}_{2}
\end{array}\right]^{[k+1]}=\left[\begin{array}{l}
\bar{\delta}_{2} \\
\overline{\boldsymbol{\delta}}_{3} \\
\bar{V}_{2}
\end{array}\right]^{[k]}+\left[\begin{array}{lll}
\partial P_{2} / \partial \delta_{2} & \partial P_{2} / \partial \delta_{3} & \partial P_{2} / \partial V_{2} \\
\partial P_{3} / \partial \delta_{2} & \partial P_{3} / \partial \delta_{3} & \partial P_{3} / \partial V_{2} \\
\partial Q_{2} / \partial \delta_{2} & \partial Q_{2} / \partial \delta_{3} & \partial Q_{2} / \partial V_{2}
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
\Delta P_{2} \\
\Delta P_{3} \\
\Delta Q_{2}
\end{array}\right]^{[k]}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}^{[0]}=\left[\begin{array}{l}
0.0 \\
0.0 \\
1.0
\end{array}\right] \quad \Delta c^{[0]}=\left[\begin{array}{l}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{\text {sch }}
\end{array}\right]-\left[\begin{array}{l}
P_{2}^{[0]} \\
P_{3}^{[0]} \\
Q_{2}^{[0]}
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]-\left[\begin{array}{c}
-1.14 \\
0.562 \\
-2.28
\end{array}\right]=\left[\begin{array}{c}
-2.86 \\
1.438 \\
-0.22
\end{array}\right] \\
& \Delta x^{[0]}=J^{-1} \Delta c^{[0]} \\
& \Delta x^{[0]}=\left[\begin{array}{c}
\Delta \delta_{2}^{[0]} \\
\Delta \delta_{3}^{[0]} \\
\Delta\left|V_{2}^{[0]}\right|
\end{array}\right]=\left[\begin{array}{ccc}
54.28 & -33.28 & 24.86 \\
-33.28 & 66.04 & -16.64 \\
-27.14 & 16.64 & 49.72
\end{array}\right]\left[\begin{array}{c}
-2.86 \\
1.438 \\
-0.22
\end{array}\right]=\left[\begin{array}{c}
-0.04526 \\
-0.00772 \\
-0.02655
\end{array}\right] \\
& \bar{x}^{[1]}=\left[\begin{array}{c}
\delta_{2}^{[1]} \\
\delta_{3}^{[1]} \\
\left|V_{2}^{[1]}\right|
\end{array}\right]=\left[\begin{array}{l}
0.0+(-0.04526) \\
0.0+(-0.00772) \\
1.0+(-0.02655)
\end{array}\right]=\left[\begin{array}{c}
-0.04526 \\
-0.00772 \\
0.9734
\end{array}\right]
\end{aligned}
$$

$$
\bar{x}^{[1]}=\left[\begin{array}{c}
-0.04526 \\
-0.00772 \\
0.9734
\end{array}\right] \Delta c^{[1]}=\left[\begin{array}{l}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{s c h}
\end{array}\right]-\left[\begin{array}{l}
P_{2}^{[1]} \\
P_{3}^{[1]} \\
Q_{2}^{[1]}
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]-\left[\begin{array}{c}
-3.901 \\
1.978 \\
-2.449
\end{array}\right]=\left[\begin{array}{c}
-0.099 \\
0.0217 \\
-0.051
\end{array}\right]
$$

$$
\Delta x^{[1]}=\left[\begin{array}{ccc}
51.72 & -31.77 & 21.30 \\
-32.98 & 65.66 & -15.38 \\
-28.54 & 17.40 & 48.10
\end{array}\right]^{-1}\left[\begin{array}{c}
-0.099 \\
0.0217 \\
-0.051
\end{array}\right]=\left[\begin{array}{l}
-0.001795 \\
-0.000985 \\
-0.001767
\end{array}\right]
$$

$$
\bar{x}^{[2]}=\left[\begin{array}{l}
\delta_{3}^{[2]} \\
\delta_{3}^{[2]} \\
\left|V_{2}^{[2]}\right|
\end{array}\right]=\left[\begin{array}{c}
-0.04526+(-0.001795) \\
-0.00772+(-0.000985) \\
0.9734+(-0.001767)
\end{array}\right]=\left[\begin{array}{c}
-0.04706 \\
-0.00870 \\
0.9717
\end{array}\right]
$$

$$
\begin{aligned}
& \bar{x}^{[2]}=\left[\begin{array}{c}
-0.04706 \\
-0.00870 \\
0.9717
\end{array}\right] \Delta c^{[2]}=\left[\begin{array}{l}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{s c h}
\end{array}\right]-\left[\begin{array}{c}
P_{2}^{[1]} \\
P_{3}^{[1]} \\
Q_{2}^{[1]}
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]-\left[\begin{array}{c}
-3.999 \\
1.999 \\
-2.499
\end{array}\right]=\left[\begin{array}{c}
-0.0002 \\
0.00004 \\
-0.0001
\end{array}\right] \\
& \Delta x^{[2]}=\left[\begin{array}{ccc}
51.60 & -31.69 & 21.14 \\
-32.93 & 65.60 & -15.35 \\
-28.55 & 17.40 & 47.95
\end{array}\right]^{-1}\left[\begin{array}{c}
-0.000216 \\
0.000038 \\
-0.000143
\end{array}\right]=\left[\begin{array}{c}
-0.000038 \\
-0.000002 \\
-0.000004
\end{array}\right] \\
& \bar{x}^{[3]}=\left[\begin{array}{c}
\delta_{2}^{[3]} \\
\delta_{3}^{[3]} \\
\left|V_{2}^{[3]}\right|
\end{array}\right]=\left[\begin{array}{c}
-0.04706+(-0.000038) \\
-0.00870+(-0.000002) \\
0.9717+(-0.000004)
\end{array}\right]=\left[\begin{array}{c}
-0.04706 \\
-0.008705 \\
0.97168
\end{array}\right] \\
& \bar{x}^{[3]}=\left[\begin{array}{c}
-0.04706 \\
-0.008705 \\
0.97168
\end{array}\right] \quad \Delta c^{[2]}=\left[\begin{array}{c}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{s c h}
\end{array}\right]-\left[\begin{array}{c}
P_{2}^{[1]} \\
P_{3}^{[1]} \\
Q_{2}^{[1]}
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]-\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]=\left[\begin{array}{c}
0.0000 \\
0.0000 \\
0.0000
\end{array}\right] \\
& \varepsilon_{\max }=2.5 \times 10^{-4} \\
& P_{1}=\left|V_{1}\right|^{2}\left|Y_{11}\right| \cos \left(\theta_{11}\right)+\left|V_{1}\right|\left|V_{2} \| Y_{12}\right| \cos \left(\theta_{12}-\delta_{1}+\delta_{2}\right)+\left|V_{1}\right|\left|V_{3}\right|\left|Y_{13}\right| \cos \left(\theta_{13}-\delta_{1}+\delta_{3}\right) \\
& Q_{1}=-\left|V_{1}\right|^{2}\left|Y_{11}\right| \sin \left(\theta_{11}\right)-\left|V _ { 1 } \left\|V_{2}| | Y_{12}\left|\sin \left(\theta_{12}-\delta_{1}+\delta_{2}\right)-\left|V_{1} \| V_{3}\right|\right| Y_{13} \mid \sin \left(\theta_{13}-\delta_{1}+\delta_{3}\right)\right.\right. \\
& Q_{3}=-\left|V_{3}\right| V_{1}| | Y_{31}\left|\sin \left(\theta_{31}-\delta_{3}+\delta_{1}\right)-\left|V_{3}\right|\right| V_{2}| | Y_{32}\left|\sin \left(\theta_{32}-\delta_{3}+\delta_{2}\right)-\left|V_{3}\right|^{2}\right| Y_{33} \mid \sin \left(\theta_{33}\right) \\
& P_{1}=2.1842 p u \\
& Q_{1}=1.4085 p u \\
& Q_{3}=1.4617 p u
\end{aligned}
$$

Q.2-d)

$$
\begin{aligned}
& B^{\prime}=\left[\begin{array}{cc}
-52 & 32 \\
32 & -62
\end{array}\right] \\
& {\left[B^{\prime}\right]^{-1}=\left[\begin{array}{ll}
-0.028182 & -0.014545 \\
-0.014545 & -0.023636
\end{array}\right]}
\end{aligned}
$$

$$
B^{\prime \prime}=[-52]
$$

$$
\left[B^{\prime \prime}\right]^{-1}=[-0.019231]
$$

Initial values:

$$
V^{[0]}=\left[\begin{array}{l}
1.05 \angle 0^{\circ} \\
1.00 \angle 0^{\circ} \\
1.00 \angle 0^{\circ}
\end{array}\right]
$$

First iteration:

$$
\begin{aligned}
& \bar{y}=\left[\begin{array}{l}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{s c h}
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right] \quad \bar{x}^{[k]}=\left[\begin{array}{l}
\delta_{2}^{[k]} \\
\delta_{3}^{[k]} \\
V_{2}^{[k]}
\end{array}\right] \quad \bar{x}^{[0]}=\left[\begin{array}{l}
0.0 \\
0.0 \\
1.0
\end{array}\right] \\
& f(\bar{x})=\left[\begin{array}{c}
P_{i n j 2}(\bar{x}) \\
P_{i n j 3}(\bar{x}) \\
Q_{i n j 2}(\bar{x})
\end{array}\right] \quad P_{i n j i}=\sum_{j=1}^{n}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \\
& Q_{i n j i}=-\sum_{i=1}^{n}\left|V_{i}\right| V_{j} \| Y_{i j} \mid \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)
\end{aligned}
$$

$$
f(\bar{x})=\left[\begin{array}{l}
\left|V_{2}{ }^{2}\right| Y_{22}\left|\cos \left(\theta_{22}\right)+\left|V_{2}\right|\right| V_{1}| | Y_{21}\left|\cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}\right|\right| V_{3}| | Y_{23} \mid \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right) \\
\left|V_{3}\right|^{2}\left|Y_{33}\right| \cos \left(\theta_{33}\right)+\left|V_{3}\right| V_{1}| | Y_{3 \mid}\left|\cos \left(\theta_{31}-\delta_{3}+\delta_{1}\right)+\left|V_{3}\right| V_{2}\right| Y_{33} \mid \cos \left(\theta_{32}-\delta_{3}+\delta_{2}\right) \\
-\left|V_{2}\right|^{2}\left|Y_{22}\right| \sin \left(\theta_{22}\right)-\left|V_{2}\right|\left|V_{1}\right| Y_{21}\left|\sin \left(\theta_{21}-\delta_{2}+\delta_{1}\right)-\left|V_{2}\right|\right| V_{3}\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\left|V_{2}\right|^{2}|58.1| \cos (-1.11)+\left|V_{2}\right| 1.05| | 22.4\left|\cos \left(2.03-\delta_{2}\right)+\left|V_{2}\right|\right| 1.04| | 35.8 \mid \cos \left(2.03-\delta_{2}+\delta_{3}\right) \\
|1.04|^{2}|67.2| \cos (-1.17)+|1.04| 1.05|31.6| \cos \left(1.89-\delta_{3}\right)+|1.04| V_{2}| | 35.8 \mid \cos \left(2.03-\delta_{3}+\delta_{2}\right) \\
-\left|V_{2}\right|^{2}|58.1| \sin (-1.11)-\left|V_{2}\right||1.05||22.4| \sin \left(2.03-\delta_{2}\right)-\left|V_{2}\right| 1.04| | 35.8 \mid \sin \left(2.03-\delta_{2}+\delta_{3}\right)
\end{array}\right]
$$

$$
\Delta y^{[0]}=\left[\begin{array}{l}
P_{2}^{s c h} \\
P_{3}^{s c h} \\
Q_{2}^{s c h}
\end{array}\right]-\left[\begin{array}{l}
P_{2}^{[0]} \\
P_{3}^{[0]} \\
Q_{2}^{[0]}
\end{array}\right]=\left[\begin{array}{c}
-4.0 \\
2.0 \\
-2.5
\end{array}\right]-\left[\begin{array}{c}
-1.14 \\
0.562 \\
-2.28
\end{array}\right]=\left[\begin{array}{c}
-2.86 \\
1.438 \\
-0.22
\end{array}\right]
$$

$\left[\begin{array}{l}\Delta \delta_{2}^{[0]} \\ \Delta \delta_{3}^{[0]}\end{array}\right]=\left[\begin{array}{ll}0.028182 & 0.014545 \\ 0.014545 & 0.023636\end{array}\right]\left[\begin{array}{c}-2.86 / 1.0 \\ 1.438 / 1.04\end{array}\right]=\left[\begin{array}{l}-0.06048 \\ -0.00891\end{array}\right]$
$\left[\Delta\left|V_{2}^{[0]}\right|\right]=[0.019231][-0.22 / 1.0]=[-0.004231]$

$$
\begin{aligned}
\delta_{2}^{[1]} & =0.0+(-0.06048)=-0.06048 \\
\delta_{3}^{[1]} & =0.0+(-0.00891)=-0.00891 \\
\left|V_{2}^{[1]}\right| & =1.0+(-0.004231)=0.995769
\end{aligned}
$$

Remaining iterations:

Iter	$\delta 2$	$\delta 3$	$\|V 2\|$	$\Delta P 2$	$\Delta P 3$	$\Delta Q 2$
1	-0.060482	-0.008909	0.995769	-2.860000	1.438400	-0.220000
2	-0.056496	-0.007952	0.965274	0.175895	-0.070951	-1.579042
3	-0.044194	-0.0086990	0.965711	0.640309	-0.457039	0.021948
4	-0.044802	-0.008986	0.972985	-0.021395	0.0011195	0.365249
5	-0.047665	-0.008713	0.973116	-0.153368	0.112899	0.006657
6	-0.047614	-0.008645	0.971414	0.000520	0.002610	-0.086136
7	-0.046936	-0.008702	0.971333	0.035980	-0.026190	-0.004067
8	-0.046928	-0.008720	0.971732	0.000948	-0.001411	0.020119
9	-0.047087	-0.008707	0.971762	-0.008442	0.006133	0.001558
10	-0.047094	-0.008702	0.971669	-0.000470	0.000510	-0.004688

