KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE-463

Key Solution

Quiz 3
ser\#:
I.D.:
Name:

The one-line diagram of a simple power system is shown below. All impedances are expressed in per unit on a common MVA base. The generators are operating on no load at their rated voltage with their emfs in phase. A three-phase fault occurs at bus 1 through a fault impedance of $Z_{f}=j 0: 08$ per unit.
(a) Calculate the subtransient fault current in per unit.
(b) Determine the bus voltages during the fault.

Solution:

The impedance diagram is as shown below

(a) Impedance to the point of fault is

$$
X=j \frac{(0.2)(0.3)}{0.2+0.3}=j 0.12 \mathrm{pu}
$$

The fault current is

$$
I_{f}=\frac{1}{j 0.12+j 0.08}=5 \angle-90^{\circ} \mathrm{pu}
$$

(b)

$$
\begin{aligned}
V_{1} & =(j 0.08)(-j 5)=0.4 \mathrm{pu} \\
I_{g 1} & =\frac{j 0.3}{j 0.5}(5) \angle-90^{\circ}=3 \angle-90^{\circ} \mathrm{pu} \\
I_{g 2} & =\frac{j 0.2}{j 0.5}(5) \angle-90^{\circ}=2 \angle-90^{\circ} \mathrm{pu} \\
V_{2} & =0.4+(j 0.2)(-j 2)=0.8 \mathrm{pu} \\
V_{3} & =0.4+(j 0.1)(-j 3)=0.7 \mathrm{pu}
\end{aligned}
$$

