KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT ELECTRICAL ENGINEERING EE – 360 Electric Energy Engineering

Tentative Course Syllabus 081-2008/2009

Instructor

Name	E-mail	Phone #	Location	Office Hour
Ibrahim O Habiballah	ibrahimh@kfupm.edu.sa	4985	59-2080	11:15-11:45am UT

Textbook: Electromechanical Energy Devices and Power Systems By: Zia A. Yamayee, Juan L. Bala. Jr., 1994.

Lecture Schedule

1. Three Phase Circuits: (Week # 1)

Phasor diagram, Balanced 3-phase circuits, Delta and Wye connections Power measurements.

2. Magnetic Circuits: (Week # 2 – 3)

Ampere's Law: Permeability, Magnetic Flux.
Magnetic Circuit (Concept and Analogy).
Magnetic Circuit Computations.
Magnetization curves of ferromagnetic materials.
Series and Parallel Circuits.
Hysteresis and Eddy-current losses in ferromagnetic materials.

3. Transformers: (Week # 3 – 6)

Introduction and construction.

Theory of operation.

Equivalent circuit.

Parameters from No-Load and Short Circuit Tests

Voltage regulation and efficiency.

Auto-transformers and parallel operation of transformers

3 Phase transformers connections and equivalent cirtciut.

4. DC Machines: (Week # 6 – 9)

Introduction and construction Generation of Unidirectional Voltages Voltage and Torque equations, and energy losses. Equivalent circuit of DC generator, and DC generator types. Voltage-current characteristic and terminal voltage control. Equivalent circuit of DC motor, and DC motor types. Speed-Torque Characteristics and Speed Control (field and armature control).

5. 3-Phase Synchronous Machines: (Week # 9 – 12)

Introduction and Construction. Generation of a 3-phase voltage and Voltage equation.

Linear Analysis, equivalent circuit and Voltage Regulation.

Power of Cylindrical-Rotor Machine.

Parallel operation of synchronous generators.

Synchronous motor.

Phasor diagram, equivalent circuit and power factor control.

6. 3-Phase Induction Motors: (Week # 12 – 14)

Introduction and Construction.
Revolving Magnetic Field (skip mathematical analysis).
IM as a transformer.
Equivalent Circuit.
Equivalent Circuit Parameters from Tests.
Computation of IM Performance.
Torque-Speed Characteristic, Starting Torque and Maximum Developed Torque.
7. Transmission Lines: (Week # 14 – 15)

Transmission line parameters.

Transmission line representation.

ABCD parameters.

Voltage regulation and efficiency.

Tentative Laboratory & Problem Session Schedule:

Week #	Lab. Activity	
1	No Experiment	
2	Exp # 1: Introduction to Cassy Lab	
3	Exp # 2: Three Phase Circuits and Power Measurements	
4	Exp # 3: Magnetic Circuits Characteristics	
5	No Experiment: Problem Session # 1	
6	No Experiment	
7	Exp # 4: Equivalent Circuit and Performance Evaluation of Single-Phase	
	Transformer	
8	Exp # 5: Three Phase Transformers	
9	No Experiment	
10	Exp # 6: DC Genrator Characteristics	
11	Exp # 7: DC Motor Characteristics	
12	No Experiment: Problem Session # 2	
13	Exp # 8: Determination Of Parameters of Three Phase Synchronous Generators	
14	Exp # 9: Equivalent Circuit, Performance, and Torque-Speed Characteristics of $3-\Phi$	
	Induction Motors	
15	Laboratory Final Exam	

Major examination				
Exam #	Date	Place	Time	Sec
1	Wednesday, 12 Nov., 2008	6-125	7 – 9 PM	All
2	Tuesday, 6 Jan., 2009	6-125	8 - 10 PM	All

Grading Policy		
Quizzes and Attendance	10%	
Project and assingments	5%	
Two major exams	30%	
Lab: attendance, Performance, and reports	12%	
Final lab examination	8%	
Final comprehensive exam	35%	

Training Problems List (Not to be submitted)

HW#	Topics	Text Section	H.W.
1	Three Phase Balanced Circuits	33,3.4	3.19, 3.22, 3.23, 3.25, 3.26, 3.27
2	Magnetic Circuits	4.1-4.4 +notes	4.2, 4.3, 4.4, 4.11
3	Transformers	4.5.1-4.5.6	4.14, 4.15, 4.19, 4.21, 4.23, 4.24, 4.29, 4.31, 4.35
4	DC Machines	6.1-6.7	6.3, 6.7, 6.9, 6.13, 6.18, 6.23, 6.27, 6.32, 636
5	Synchronous Machines	7.1, 7.2, 7.6	7.3, 7.8, 7.10, 7.12, 7.21, 7.25, 7.26, 7.33, 7.36
6	Three Phase Induction Motor	8.1-8.4	8.5, 8.11, 8.17, 8.20, 8.23, 8.29, 8.33, 8.35
7	Transmission Lines	9.1-9.5	9.2, 9.4, 9.8, 9.19, 9.24, 9.29, 9.31, 9.34

External Homeworks Calendar

Activity	Topics	Due date (During the last class of Week #)
HW1	Three Phase Balanced Circuits	2
HW2	Magnetic Circuits	4
HW3	Transformers	7
HW4	DC Machines	10
HW5	Synchronous Machines	12
HW6	Three Phase Induction Motor	15

Course Objectives

After successfully completing the course, the students will be able to

- understand basic concepts of electrical machines and transmission lines
- will learn how to start and operate an electrical machine;
- learn the details of construction of different types of electrical machines;
- learn how to analyze the performance and design the components

Course Outcomes

- 1. An ability to apply knowledge of mathematics, science, and engineering to the analysis of electrical machineries and transmission lines.
- 2. Design and conduct experiments, as well as to analyze and interpret data
- 3. An ability to identify, formulate, and solve engineering problems in the area of electromechanical energy conversion devices.
- 4. Acquire knowledge of contemporary issues
- 5. Use the techniques, skills, and modem engineering tools necessary for engineering practice.