KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE 360

MAJOR EXAM \# 1
October 24, 2007
6:30-7:30 pm

Key Solution
Section: 4

Student Name:

Student I.D.\#

Serial \#

Question \# 1	
Question \# 2	
Total	

Q. 1-I) A $345-\mathrm{kV}$, three-phase transmission line delivers $500 \mathrm{MVA}, 0.866$ power factor lagging, to a three-phase load connected to its receiving-end terminals. Assume that the load is wye connected and the voltage at the receiving end is 345 kV .
a. Calculate the line and phase currents.
b. Find the complex load impedance per phase.
c. Find the total real and reactive power.
a)

$$
\begin{aligned}
& S=500 \mathrm{MVA}, V_{L}=345 \mathrm{kV}, \text { wye-load, } P F=0.866 \text { lagging } \\
& I_{P h}=\frac{500,000}{\sqrt{3}(345)} \angle-\cot ^{-1} 0.866 \\
& V_{p h}=\frac{345}{\sqrt{3}} \angle 0^{\circ}=199.2 \angle 0^{\circ} \mathrm{V} \\
& I_{L}=I_{\text {ph }}=836.74 \angle-30^{\circ} \mathrm{A}
\end{aligned}
$$

b) $z_{y, \text { ph }}=\frac{199.2 \angle 0^{\circ}}{836.74 \angle-30^{\circ}}=238 \angle 30^{\circ} \Omega$
c)

$$
P_{T}=433 \mathrm{MW} ; Q_{T}=250 \mathrm{MVAR}
$$

Q. 1-II) The phasor diagram shown below is for (select the correct answer)

a) wye-connected load with lagging power factor.
b) delta-connected load with leading power factor.
c) delta-connected load with lagging power factor.
d) wye-connected load with leading power factor.
Q. 2) A ferromagnetic circuit has a magnetic core with infinitely high relative permeability. It has three legs, and air gaps of 2 mm and 1 mm are cut from sections A and C, respectively, as shown below. A coil is wound on the center leg B, and it has 200 turns and a resistance of 2.5 Ohm. The magnetic core has a $5 \times 5 \mathrm{~cm}$ uniform cross-sectional area. A DC voltage is applied to the coil.
a. Determine the voltage that will produce a flux density of 0.75 T in the right leg C , which contains the 1 -mm air gap.
b. Find the magnetic flux in the other two legs of the core.

(50 Marks)

$$
\text { (a) } \begin{aligned}
& R_{c}=\frac{g_{c}}{\mu_{0} A}=\frac{1 \times 10^{-3}}{\left(4 \pi \times 10^{-7}\right)\left(25 \times 10^{-4}\right)}=318,310 \mathrm{At} / \mathrm{Wb} \\
& \phi_{c}=B A=(0.75)\left(25 \times 10^{-4}\right)=1.875 \times 10^{-3} \mathrm{~Wb} \\
& N I=R_{c} \phi_{c}=(318,310)\left(1.875 \times 10^{-3}\right)=596.83 \mathrm{At} \\
& I=\frac{596.83}{200}=2.984 \mathrm{~A} \\
& V=R I=(2.5)(2.984)=7.46 \mathrm{~V} \\
& \text { (b) } R_{A}=\frac{g_{A}}{\mu_{1} A}=\frac{2 \times 10^{-3}}{\left(4 \pi \times 10^{-7} \times 25 \times 10^{-4}\right)}=636,620 \mathrm{At} / \mathrm{Wb} \\
& \phi_{A}=\frac{N I}{R_{A}}=\frac{596.83}{636.620}=9.375 \times 10^{-4} \mathrm{~Wb} \\
& \phi_{B}=\phi_{A}+\phi_{c}=9.375 \times 10^{-4}+18.75 \times 10^{-4}=28.125 \times 10^{-4} \\
& R_{0}
\end{aligned}
$$

