KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

DEPARTMENT ELECTRICAL ENGINEERING

EE – 360 Electric Energy Engineering

Course Syllabus 071 <u>Instructor</u>

Name	E-mail	Phone #	Location
Dr. Chokri Belhaj Ahmed	bachokri@kfupm.edu.sa	4238	59-0054

Textbook: Electromechanical Energy Devices and Power Systems

By: Zia A. Yamayee, Juan L. Bala. Jr., 1994.

Lecture Schedule

1. Three Phase Circuits: (4 Lectures)

Phasor diagram,

Balanced 3-phase circuits,

Delta and Wye connections

Power measurements.

2. Magnetic Circuits: (4 Lectures)

Ampere's Law: Permeability, Magnetic Flux.

Magnetic Circuit (Concept and Analogy).

Magnetic Circuit Computations.

Magnetization curves of ferromagnetic materials.

Series and Parallel Circuits.

Hysteresis and Eddy-current losses in ferromagnetic materials.

3. **Transformers:** (9 Lectures)

Introduction and construction.

Theory of operation.

Equivalent circuit.

Parameters from No-Load and Short Circuit Tests

Voltage regulation and efficiency.

Auto-transformers and parallel operation of transformers

3 Phase transformers connections and equivalent cirtciut.

4. **DC Machines: (9** Lectures)

Introduction and construction

Generation of Unidirectional Voltages

Voltage and Torque equations, and energy losses.

Equivalent circuit of DC generator, and DC generator types.

Voltage-current characteristic and terminal voltage control.

Equivalent circuit of DC motor, and DC motor types.

Speed-Torque Characteristics and Speed Control (field and armature control).

5. **3-Phase Synchronous Machines:** (7 Lectures)

Introduction and Construction.

Generation of a 3-phase voltage and Voltage equation.

Linear Analysis, equivalent circuit and Voltage Regulation.

Power of Cylindrical-Rotor Machine.

Parallel operation of synchronous generators.

Synchronous motor.

Phasor diagram, equivalent circuit and power factor control.

6. **3-Phase Induction Motor: (7** Lectures)

Introduction and Construction.

Revolving Magnetic Field (skip mathematical analysis).

IM as a transformer.

Equivalent Circuit.

Equivalent Circuit Parameters from Tests.

Computation of IM Performance.

Torque-Speed Characteristic, Starting Torque and Maximum Developed Torque.

7. Transmission Line: (5 Lectures)

Transmission line parameters.

Transmission line representation.

ABCD parameters.

Voltage regulation and efficiency.

Tentative Laboratory & Problem Session Schedule

WEEK	TITLE	DATE
2	EXP # 1: INTRODUCTION TO CASSY LAB	15-19 SEP
3	OFF	22-26 SEP
4	EXP # 2 : THREE PHASE CIRCUITS AND POWER MEASUREMENTS	29SEP-03 OCT
5	PROBLEM SESSION # 1 (MAJOR I: WED 24-OCTOBER 6:30 to 8:30 PM)	20-24 OCT
6	EXP # 3: MAGNETIC CIRCUITS CHARACTERISTICS	27-31 OCT
7	EXP # 4 : EQUIVALENT CIRCUIT AND PERFORMANCE EVALUATION OF SINGLE-PHASE TRANSFORMER	03-07 NOV
8	EXP # 5: THREE PHASE TRANSFORMERS	
9	OFF	17-21 NOV
10	EXP # 6: DC GENRATOR CHARACTERISTICS	24-28 NOV
11	EXP # 7: DC MOTOR CHARACTERISTICS	01-05 DEC
12	EXP # 8 : DETERMINATION OF PARAMETERS OF THREE PHASE SYNCHRONOUS GENERATORS	08-12 DEC
13	PROBLEM SESSION # 2 (MAJOR II: TUE 01-JANUARY 6:30 to 8:30 PM)	29DEC-02 JAN
14	EXP # 9 : EQUIVALENT CIRCUIT, PERFORMANCE, AND TORQUE-SPEED CHARACTERISTICS OF 3-Φ INDUCTION MOTORS	05-09 JAN
15	FINAL LAB EXAM	12-16 JAN

Major examination				
Exam #	Date	Place	Time	Sec
1	24 October, 2007	14-108	6:30 – 8:30 PM	All
2	01 Jan, 2008	06-125 & 04-125	6:30 – 8:30 PM	All

Grading Policy		
Quizzes and Attendance	10%	
Project and assingments	5%	
Two major exams	30%	
Lab: attendance, Performance, and reports	12%	
Final lab examination	8%	
Final comprehensive exam	35%	

Homework List

HW#	Topics	Text Section	H.W.
1	Three Phase Balanced Circuits	33,3.4	3.19, 3.22, 3.23, 3.25, 3.26, 3.27
2	Magnetic Circuits	4.1-4.4 +notes	4.2, 4.3, 4.4, 4.11 + extra problems
3	Transformers	4.5.1-4.5.6	4.14, 4.15, 4.19, 4.21, 4.23, 4.24, 4.29, 4.31, 4.35
4	DC Machines (Generators)	6.1-6.6	6.3, 6.7, 6.9,6.13,
5	DC Machines (Motors)	6.7	6.18, 6.23,, 6.27, 6.32, 636
6	Synchronous Machines	7.1, 7.2, 7.6	7.3, 7.8, 7.10, 7.12, 7.21,7.25, 7.26, 7.33, 7.36
7	Three Phase Induction Motor	8.1-8.4	8.5, 8.11, 8.17,8.20, 8.23, 8.29, 8.33, 8.35
8	Transmission Lines	9.1-9.5	9.2, 9.4, 9.8, 9.19, 9.24, 9.29, 9.31, 9.34

Course Objectives

After successfully completing the course, the students will be able to

- understand basic concepts of electrical machines and transmission lines
- will learn how to start and operate an electrical machine;
- learn the details of construction of different types of electrical machines;
- learn how to analyze the performance and design the components

Course Outcomes

- 1. An ability to apply knowledge of mathematics, science, and engineering to the analysis of electrical machineries and transmission lines.
- 2. Design and conduct experiments, as well as to analyze and interpret data
- 3. An ability to identify, formulate, and solve engineering problems in the area of electromechanical energy conversion devices.
- 4. Acquire knowledge of contemporary issues
- 5. Use the techniques, skills, and modem engineering tools necessary for engineering practice.

Tentative Assignment Calendar

Activity	Due date
HW1	Mon. September 17
HW2	Sat. September 29
PS1	20-24 OCT
HW3	Sat Nov 03
HW4	Sat Nov 17
HW5	Sat. Nov 24
HW6	Sat. Dec 08
PS2	29 DEC-02 JAN
Project	Sat Jan 05
HW7	Sat. Jan 07
HW8	Wed Jan 16