KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

 ELECTRICAL ENGINEERING DEPARTMENTDr. Ibrahim O Habiballah

EE 463

MAJOR EXAM \# 1

November $5^{\text {th }}, 2007$

7:30-9:00 pm
Key Solution
Section: 1

Student Name:

Student I.D.\#

Serial \#:

Question \# 1	
Question \# 2	
Question \# 3	
Total	

Q. 1) Prepare a per phase equivalent circuit of the system shown below and show all impedances in p.u. on a $100-\mathrm{MVA}, 132-\mathrm{kV}$ base in the transmissionline circuit. The necessary data for this system are as follows:

$$
\begin{aligned}
& \mathrm{G}_{1}: 50 \text { MVA, } 12.2 \mathrm{kV}, X=0.15 \text { p.u. } \\
& \mathrm{G}_{2}: 20 \text { MVA, } 13.8 \mathrm{kV}, X=0.15 \text { p.u. } \\
& T_{1}: 80 \mathrm{MVA}, 12.2 / 161 \mathrm{kV}, X=0.10 \text { p.u. } \\
& T_{2}: 40 \text { MVA, } 13.8 / 161 \mathrm{kV}, X=0.10 \text { p.u. } \\
& \text { Load: } 50 \text { MVA, } 0.80 \text { PF lagging, operating at } 154 \mathrm{kV}
\end{aligned}
$$

The load is modeled as a parallel combination of resistance and inductance

(40 Marks)

Solution

Convert all quantities to a common system base that has been specified in the transmission circuit

Base kV in the transmission line $=132 \mathrm{kV}$
Base kV in the generator circuit $G_{1}=132 \times \frac{12.2}{161}=10.002 \mathrm{kV}$
Base kV in the generator circuit $G_{2}=132 \times \frac{13.8}{161}=11.31 \mathrm{kV}$

We now proceed to convert all the parameter values to p.u. on the common base specified.

$$
\begin{aligned}
& G_{1}: X=0.15 \times \frac{100}{50} \times\left(\frac{12.2}{10.002}\right)^{2}=0.4463 \text { p.u. } \\
& G_{2}: X=0.15 \times \frac{100}{20} \times\left(\frac{13.8}{11.31}\right)^{2}=1.1166 \text { p.u. } \\
& T_{1}: X=0.1 \times \frac{100}{80} \times\left(\frac{12.2}{10.002}\right)^{2}=0.1 \times \frac{100}{80} \times\left(\frac{161}{132}\right)^{2}=0.18596 \text { p.u. } \\
& T_{2}: X=0.1 \times \frac{100}{40} \times\left(\frac{13.8}{11.31}\right)^{2}=0.1 \times \frac{100}{40} \times\left(\frac{161}{132}\right)^{2}=0.3719 \text { p.u. }
\end{aligned}
$$

The base impedance in the transmission-line circuit $=\frac{(132)^{2}}{100}=174.24 \Omega$.

$$
Z_{\text {Transline }}=\frac{40+j 160}{174.24}=0.2296+j 0.9183 \text { p.u. }
$$

The p.u. impedance of the transmission lines connecting the load bus to the highvoltage buses is given by

$$
Z=\frac{20+j 80}{174.24}=0.1148+j 0.4591 \text { p.u. }
$$

The base impedance in the load circuit is the same as the base impedance in the trans-mission-line circuit.

The load is specified as $50(0.8+j 0.6)=40+j 30$ MVA.
$R_{\text {Load }}^{\text {Parallel }}=\frac{(154)^{2}}{40}=592.9 \Omega=\frac{592.9}{174.24}=3.402$ p.u.
$R_{\text {Load }}^{\text {Parallel }}=\frac{(154)^{2}}{30}=790.53 \Omega=\frac{790.53}{174.24}=4.537$ p.u.

Q. 2) Consider a 5-bus system with the following line data as indicated in the table below. The table provides information regarding the network topology of the system by giving the bus numbers to which the lines are connected. The table also provides the series reactance and the line charging susceptance for each line in per-unit on an appropriately chosen base. Consider the pi-equivalent model for the transmission lines.

Line Data	From Bus	To Bus	X (p.u.)	B (p.u.)
Transformer	1	2	0.05	0
Transmission Line	2	3	0.25	0.20
Transmission Line	2	5	0.40	0.20
Transmission Line	3	4	0.20	0.10
Transformer	4	5	0.04	0

- Determine the bus admittance matrix for this system.
- If a generator with a reactance of j1.25 p.u. is connected to bus 1 , and a motor with a reactance of $\mathrm{j} 1.25 \mathrm{p} . \mathrm{u}$. is connected to bus 5 , find the modified bus admittance matrix.

Solution

The bus admittance matrix is

$$
Y_{\text {BUS }}=j\left[\begin{array}{ccccc}
-20.0 & 20.0 & 0 & 0 & 0 \\
20.0 & -26.3 & 4.0 & 0 & 2.5 \\
0 & 4.0 & -8.85 & 5.0 & 0 \\
0 & 0 & 5.0 & -29.95 & 25.0 \\
0 & 2.5 & 0 & 25.0 & -27.4
\end{array}\right]
$$

The modified bus admittance matrix is

$$
Y_{\text {BUS }}=j\left[\begin{array}{ccccc}
-20.8 & 20.0 & 0 & 0 & 0 \\
20.0 & -26.3 & 4.0 & 0 & 2.5 \\
0 & 4.0 & -8.85 & 5.0 & 0 \\
0 & 0 & 5.0 & -29.95 & 25.0 \\
0 & 2.5 & 0 & 25.0 & -28.2
\end{array}\right]
$$

Q. 2) Apply the Newton-Raphson method to 5-bus system shown below to determine the mismatch equations in a matrix form (i.e., determine $\Delta \mathrm{P}$ and $\Delta \mathrm{Q}$ as a vector, the Jacobian partial derivatives as a matrix, and $\Delta \delta$ and $\Delta \mathrm{V}$ as a vector. Consider bus1 as the slack bus; busses 2,3 , and 4 as PQ busses; bus 5 as PV bus.

(30 Marks)

Solution

$$
\left[\begin{array}{c}
\Delta P_{2} \\
\Delta P_{3} \\
\Delta P_{4} \\
\Delta P_{5} \\
\Delta Q_{2} \\
\Delta Q_{3} \\
\Delta Q_{4}
\end{array}\right]=\left[\begin{array}{ccccccc}
\frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} & 0 & \frac{\partial P_{2}}{\partial \delta_{5}} & \left|V_{2}\right| \frac{\partial P_{2}}{\partial\left|V_{2}\right|} & \left|V_{3}\right| \frac{\partial P_{2}}{\partial V_{3} \mid} & 0 \\
\frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} & 0 & \frac{\partial P_{3}}{\partial \delta_{5}} & \left|V_{2}\right| \frac{\partial P_{3}}{\partial\left|V_{2}\right|} & \left|V_{3}\right| \frac{\partial P_{3}}{\partial V_{3} \mid} & 0 \\
0 & 0 & \frac{\partial P_{4}}{\partial \delta_{4}} & \frac{\partial P_{4}}{\partial \delta_{5}} & 0 & 0 & \left|V_{4}\right| \frac{\partial P_{4}}{\partial\left|V_{4}\right|} \\
\frac{\partial P_{5}}{\partial \delta_{2}} & \frac{\partial P_{5}}{\partial \delta_{3}} & \frac{\partial P_{5}}{\partial \delta_{4}} & \frac{\partial P_{5}}{\partial \delta_{5}} & \left|V_{2}\right| \frac{\partial P_{5}}{\partial\left|V_{2}\right|} & \left|V_{3}\right| \frac{\partial P_{5}}{\partial\left|V_{3}\right|} & \left|V_{4}\right| \frac{\partial P_{5}}{\partial\left|V_{4}\right|} \\
\frac{\partial Q_{2}}{\partial \delta_{2}} & \frac{\partial Q_{2}}{\partial \delta_{3}} & 0 & \frac{\partial Q_{2}}{\partial \delta_{5}} & \left|V_{2}\right| \frac{\partial Q_{2}}{\partial\left|V_{2}\right|} & \left|V_{3}\right| \frac{\partial Q_{2}}{\partial V_{3} \mid} & 0 \\
\frac{\partial Q_{3}}{\partial \delta_{2}} & \frac{\partial Q_{3}}{\partial \delta_{3}} & 0 & \frac{\partial Q_{3}}{\partial \delta_{5}} & \left|V_{2}\right| \frac{\partial Q_{3}}{\partial\left|V_{2}\right|} & \left|V_{3}\right| \frac{\partial Q_{3}}{\partial\left|V_{3}\right|} & 0 \\
0 & 0 & \frac{\partial Q_{4}}{\partial \delta_{4}} & \frac{\partial Q_{4}}{\partial \delta_{5}} & 0 & 0 & \left|V_{4}\right| \frac{\partial Q_{4}}{\partial\left|V_{4}\right|}
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{2} \\
\Delta \delta_{3} \\
\Delta \delta_{4} \\
\Delta \delta_{5} \\
\frac{\Delta V_{2}}{\left|V_{2}\right|} \\
\frac{\Delta V_{3}}{\left|V_{3}\right|} \\
\frac{\Delta V_{4}}{\left|V_{4}\right|}
\end{array}\right]
$$

