KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 ELECTRICAL ENGINEERING DEPARTMENT
 Dr. Ibrahim O. Habiballah
 EE-463
 Key Solution
 Quiz \# 2 Serial \#
 Name:
 I.D.\#

The figure below shows the one-line diagram of a simple three-bus power system with generation at buses 1 (slack bus) and 3 (PV bus). The voltage at bus 1 is $V_{1}=1.025 \angle 0^{\circ}$ per unit. Voltage magnitude at bus 3 is fixed at 1.03 pu with a real power generation of 300 MW . A load consisting of 400 MW and 200 Mvar is taken from bus 2 (PQ bus). Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected.

(a) Using Gauss-Seidel method and initial estimates of $V_{2}^{(0)}=1.0+j 0$ and $V_{3}^{(0)}=1.03+j 0$ and keeping $\left|V_{3}\right|=1.03 \mathrm{pu}$, determine the phasor values of V_{2} and V_{3}. Perform one iteration.
(b) If after several iterations the bus voltages converge to
$V_{2}=1.001243 \angle-2.1^{\circ}=1.000571-j 0.0366898 \mathrm{pu}$
$V_{3}=1.03 \angle 1.37^{\circ}=1.029706+j 0.0246 \mathrm{pu}$
Determine the line flows and line losses and the slack bus real and reactive power. Construct a power flow diagram and show the direction of the line flows.
(a) Line impedances converted to admittances are $y_{12}=-j 40, y_{13}=-j 20$ and $y_{23}=-j 40$. The load and generation expressed in per units are

$$
\begin{aligned}
& S_{2}^{s c h}=-\frac{(400+j 200)}{100}=-4.0-j 2.0 \mathrm{pu} \\
& P_{3}^{s c h}=\frac{300}{100}=3.0 \mathrm{pu}
\end{aligned}
$$

Bus 1 is taken as the reference bus (slack bus). Starting from an initial estimate of $V_{2}^{(0)}=1.0+j 0.0$ and $V_{3}^{(0)}=1.03+j 0.0, V_{2}$ and V_{3} are computed from (6.28).

$$
\begin{aligned}
V_{2}^{(1)} & =\frac{\frac{S_{2}^{s c c^{*}}}{V_{2}^{(0)^{*}}}+y_{12} V_{1}+y_{23} V_{3}^{(0)}}{y_{12}+y_{23}} \\
& =\frac{\frac{-4.0+j 2.0}{1.0-j 0}+(-j 40)(1.025+j 0)+(-j 40)(1.03+j 0)}{(-j 80)} \\
& =1.0025-j 0.05
\end{aligned}
$$

Bus 3 is a regulated bus where voltage magnitude and real power are specified. For the voltage-controlled bus, first the reactive power is computed from (6.30)

$$
\begin{aligned}
Q_{3}^{(1)}= & -\Im\left\{V_{3}^{(0)^{*}}\left[V_{3}^{(0)}\left(y_{13}+y_{23}\right)-y_{13} V_{1}-y_{23} V_{2}^{(1)}\right]\right\} \\
= & -\Im\{(1.03-j 0)[(1.03+j 0)(-j 60)-(-j 20)(1.025+j 0) \\
& -(-j 40)(1.0025-j 0.05)]\} \\
= & 1.236
\end{aligned}
$$

The value of $Q_{3}^{(1)}$ is used as $Q_{3}^{\text {sch }}$ for the computation of voltage at bus 3. The complex voltage at bus 3, denoted by $V_{c 3}^{(1)}$, is calculated

$$
\begin{aligned}
V_{c 3}^{(1)} & =\frac{\frac{S_{3}^{s c h_{*}}}{V_{3}^{(0)} *}+y_{13} V_{1}+y_{23} V_{2}^{(1)}}{y_{13}+y_{23}} \\
& =\frac{\frac{3.0-j 1.236}{1.03-j 0}+(-j 20)(1.025+j 0)+(-j 40)(1.0025-j 0.05)}{(-j 60)} \\
& =1.0300+j 0.0152
\end{aligned}
$$

Since $\left|V_{3}\right|$ is held constant at 1.03 pu , only the imaginary part of $V_{c 3}^{(1)}$ is retained, i.e, $f_{3}^{(1)}=0.0152$, and its real part is obtained from

$$
e_{3}^{(1)}=\sqrt{(1.03)^{2}-(0.0152)^{2}}=1.0299
$$

Thus

$$
V_{3}^{(1)}=1.0299+j 0.0152
$$

For the second iteration, we have

$$
\begin{aligned}
& V_{2}^{(2)}= \frac{\frac{S_{2}^{s c h_{*}} V_{2}^{(1)^{*}}}{}+y_{12} V_{1}+y_{23} V_{3}^{(1)}}{y_{12}+y_{23}} \\
&= \frac{\frac{-4.0+j 2.0}{1.0025+j .05}+(-j 40)(1.025)+(-j 40)(1.0299+j 0.0152)}{(-j 80)} \\
&= 1.0001-j 0.0409 \quad \\
& Q_{3}^{(2)}=-\Im\left\{V_{3}^{(1)^{*}}\left[V_{3}^{(1)}\left(y_{13}+y_{23}\right)-y_{13} V_{1}-y_{23} V_{2}^{(2)}\right]\right\} \\
&=-\Im\{(1.0299-j 0.0152)[(1.0299+j 0.0152)(-j 60) \\
&\quad-(-j 20)(1.025+j 0)-(-j 40)(1.0001-j 0.0409)]\} \\
&= \frac{1.3671}{} \begin{aligned}
V_{c 3}^{(2)}= & \frac{\frac{S_{3}^{s c h} *}{V_{3}^{(1)^{*}}}+y_{13} V_{1}+y_{23} V_{2}^{(2)}}{y_{13}+y_{23}} \\
= & 1.0298+j 0.0216
\end{aligned} \\
& \frac{3.0299-j 1.3671}{1.0152}+(-j 20)(1.025)+(-j 40)(1.0001-j .0409) \\
&(-j 60)
\end{aligned}
$$

Since $\left|V_{3}\right|$ is held constant at 1.03 pu , only the imaginary part of $V_{c 3}^{(2)}$ is retained, i.e, $f_{3}^{(2)}=0.0216$, and its real part is obtained from

$$
e_{3}^{(2)}=\sqrt{(1.03)^{2}-(0.0216)^{2}}=1.0298
$$

or

$$
V_{3}^{(2)}=1.0298+j 0.0216
$$

The process is continued and a solution is converged with an accuracy of 5×10^{-5} pu to

$$
\begin{aligned}
& V_{2}=1.001243 \angle-2.1^{\circ}=1.000571-j .0366898 \mathrm{pu} \\
& S_{3}=3.0+j 1.3694 \mathrm{pu}=300 \mathrm{MW}+j 136.94 \mathrm{Mvar} \\
& V_{3}=1.03 \angle 1.36851^{\circ} \mathrm{pu}=1.029706+j 0.0246
\end{aligned}
$$

(b) Line flows and line losses are computed as in Problem 6.7, and the results expressed in MW and Mvar are

\[

\]

The slack bus real and reactive powers are

$$
\begin{aligned}
S_{1} & =S_{12}+S_{13}=(150.43+j 100.16)+(-50.43-j 9.65) \\
& =100 \mathrm{MW}+j 90.51 \mathrm{Mvar}
\end{aligned}
$$

