KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT Dr. Ibrahim O. Habiballah

EE-463

Key Solution

Name:

Quiz # 2 Serial #

I.D.#

The figure below shows the one-line diagram of a simple three-bus power system with generation at buses 1 (slack bus) and 3 (PV bus). The voltage at bus 1 is $V_1 = 1.025 \angle 0^\circ$ per unit. Voltage magnitude at bus 3 is fixed at 1.03 pu with a real power generation of 300 MW. A load consisting of 400 MW and 200 Mvar is taken from bus 2 (PQ bus). Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected.

(a) Using Gauss-Seidel method and initial estimates of V₂⁽⁰⁾ = 1.0 + j0 and V₃⁽⁰⁾ = 1.03 + j0 and keeping |V₃| = 1.03 pu, determine the phasor values of V₂ and V₃. Perform one iteration.
(b) If after several iterations the bus voltages converge to V₂ = 1.001243 ∠ - 2.1° = 1.000571 - j0.0366898 pu V₃ = 1.03 ∠1.37° = 1.029706 + j0.0246 pu Determine the line flows and line losses and the slack bus real and reactive power. Construct a power flow diagram and show the direction of the line flows.

(a) Line impedances converted to admittances are $y_{12} = -j40$, $y_{13} = -j20$ and

 $y_{23} = -j40$. The load and generation expressed in per units are

$$\begin{split} S_2^{sch} &= -\frac{(400+j200)}{100} = -4.0 - j2.0 \text{ pu} \\ P_3^{sch} &= \frac{300}{100} = 3.0 \text{ pu} \end{split}$$

Bus 1 is taken as the reference bus (slack bus). Starting from an initial estimate of $V_2^{(0)} = 1.0 + j0.0$ and $V_3^{(0)} = 1.03 + j0.0$, V_2 and V_3 are computed from (6.28).

$$V_2^{(1)} = \frac{\frac{S_2^{*ch^*}}{V_2^{(0)^*}} + y_{12}V_1 + y_{23}V_3^{(0)}}{y_{12} + y_{23}} \\ = \frac{\frac{-4.0 + j2.0}{1.0 - j0} + (-j40)(1.025 + j0) + (-j40)(1.03 + j0)}{(-j80)} \\ = 1.0025 - j0.05$$

Bus 3 is a regulated bus where voltage magnitude and real power are specified. For the voltage-controlled bus, first the reactive power is computed from (6.30)

$$\begin{aligned} Q_3^{(1)} &= -\Im\{V_3^{(0)}^*[V_3^{(0)}(y_{13}+y_{23})-y_{13}V_1-y_{23}V_2^{(1)}]\} \\ &= -\Im\{(1.03-j0)[(1.03+j0)(-j60)-(-j20)(1.025+j0)\\ &-(-j40)(1.0025-j0.05)]\} \\ &= 1.236 \end{aligned}$$

The value of $Q_3^{(1)}$ is used as Q_3^{sch} for the computation of voltage at bus 3. The complex voltage at bus 3, denoted by $V_{c3}^{(1)}$, is calculated

$$V_{c3}^{(1)} = \frac{\frac{S_3^{sch_*}}{V_3^{(0)_*}} + y_{13}V_1 + y_{23}V_2^{(1)}}{y_{13} + y_{23}} \\ = \frac{\frac{3.0 - j1.236}{1.03 - j0} + (-j20)(1.025 + j0) + (-j40)(1.0025 - j0.05)}{(-j60)} \\ = 1.0300 + j0.0152$$

Since $|V_3|$ is held constant at 1.03 pu, only the imaginary part of $V_{c3}^{(1)}$ is retained, i.e., $f_3^{(1)} = 0.0152$, and its real part is obtained from

$$e_3^{(1)} = \sqrt{(1.03)^2 - (0.0152)^2} = 1.0299$$

Thus

$$V_3^{(1)} = 1.0299 + j0.0152$$

For the second iteration, we have

$$\begin{split} V_2^{(2)} &= \frac{\frac{S_2^{sch_*}}{V_2^{(1)^*}} + y_{12}V_1 + y_{23}V_3^{(1)}}{y_{12} + y_{23}} \\ &= \frac{\frac{-4.0 + j2.0}{1.0025 + j.05} + (-j40)(1.025) + (-j40)(1.0299 + j0.0152)}{(-j80)} \\ &= 1.0001 - j0.0409 \\ Q_3^{(2)} &= -\Im\{V_3^{(1)^*}[V_3^{(1)}(y_{13} + y_{23}) - y_{13}V_1 - y_{23}V_2^{(2)}]\} \\ &= -\Im\{(1.0299 - j0.0152)[(1.0299 + j0.0152)(-j60) \\ &- (-j20)(1.025 + j0) - (-j40)(1.0001 - j0.0409)]\} \\ &= 1.3671 \\ V_{c3}^{(2)} &= \frac{\frac{S_3^{sch_*}}{V_3^{(1)^*}} + y_{13}V_1 + y_{23}V_2^{(2)}}{y_{13} + y_{23}} \\ &= \frac{\frac{3.0 - j1.3671}{1.0299 - j0.0152} + (-j20)(1.025) + (-j40)(1.0001 - j.0409)}{(-j60)} \\ &= 1.0298 + j0.0216 \end{split}$$

Since $|V_3|$ is held constant at 1.03 pu, only the imaginary part of $V_{c3}^{(2)}$ is retained, i.e, $f_3^{(2)} = 0.0216$, and its real part is obtained from

$$e_3^{(2)} = \sqrt{(1.03)^2 - (0.0216)^2} = 1.0298$$

or

$$V_3^{(2)} = 1.0298 + j0.0216$$

The process is continued and a solution is converged with an accuracy of 5×10^{-5} pu to

$$V_2 = 1.001243 \angle -2.1^\circ = 1.000571 - j.0366898$$
 pu
 $S_3 = 3.0 + j1.3694$ pu = 300 MW + j136.94 Mvar
 $V_3 = 1.03 \angle 1.36851^\circ$ pu = 1.029706 + j0.0246

(b) Line flows and line losses are computed as in Problem 6.7, and the results expressed in MW and Mvar are

$$\begin{split} S_{12} &= 150.43 + j100.16 & S_{21} = -150.43 - j92.39 & S_{L\,12} = 0.0 + j7.77 \\ S_{13} &= -50.43 - j9.65 & S_{31} = 50.43 + j10.90 & S_{L\,13} = 0.0 + j1.25 \\ S_{23} &= -249.58 - j107.61 & S_{32} = 249.58 + j126.03 & S_{L\,23} = 0.0 + j18.42 \end{split}$$

The slack bus real and reactive powers are

$$S_1 = S_{12} + S_{13} = (150.43 + j100.16) + (-50.43 - j9.65)$$

= 100 MW + j90.51 Mvar

