KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE-463 Project

Semester (071)

-

- -

The line-data and bus-data of a 9-bus system are given below.

Tap Position	MVA
(per unit)	Rating
1.02	150
	200
1.01	150
	100
	50
	150
	100
	75
	100
	(per unit) 1.02 1.01

The impedances are on 100 MVA base.

Bus-Data								
Bus Code	Bus Voltage (per unit)	P _G (MW)	$\mathbf{Q}_{\mathbf{G}}$	P _L (MW)	Q _L (MVAR	Q _{min} (MVAR	Q _{max} (MVAR	
			(MVAR))))	
1	1.04+j0.0	-	-					
2	1.025	163	-				60	
3	1.025	85	0				20	
5	-			125	50			
6	-			90	30			
8				100	35			

Use the Power World Simulation Package (the latest version can be downloaded from <u>www.powerworld.com</u>) to simulate the above system indicating the following:

- The single line diagram of the system including the circuit breaker at both ends of every line.
- The voltage (p.u.), generation (MW and MVAR), and load (MW and MVAR) for each bus, where applicable.
- The line-flows (MW and MVAR) at both ends of every line.
- The line-flow pie chart at both ends of every line.

Perform the following tasks:

- Run your **own case**^{**} for a simulation time of 2 hours (7200 seconds) and simulation speedup of 60 seconds.
- Use the load variation graph to simulate a varying load from 100% (using the base case) to 200%.
- Show the animated flows on the single-line diagram.
- Enforce the line overloads to check the line limits.
- Detect and record any system's abnormality during the simulation time (e.g., bus voltages outside 5% range of the nominal values, overloaded lines, ...etc.).

Introduce at least two different remedies for the problems detected earlier to ensure a normal operation of the system during the simulation time.

Write a formal typed-report showing the following items:

- The single-line diagram of the original case.
- The single-line diagram of the modified cases (the two solutions).
- Statement on the problems faced during the simulation time.
- Statements on the suggested solutions with clear explanation and justification.
- Comparison and discussion of the best solution.

Due dates:

November 21, 2007	The single-line diagram of the original case.	(10%)
November 28, 2007	The single-line diagram of the modified cases.	(20%)
December 8, 2007	Final Report including the above items.	(60%)
December 29-31, 200	7 Oral Exam.	(10%)

****** Your own case is as follows:

	Line-resistance	Line-	MVA Rating	$P_L + j Q_L$
		reactance		
odd	x 1.4	x 1.2	x 1.(ser#+9)	same
even	x 1.5	x 1.1	same	x 1.(ser#+9)